78 lines
2.4 KiB
Mathematica
78 lines
2.4 KiB
Mathematica
|
function [nn, L] = nntrain(nn, train_x, train_y, opts, val_x, val_y)
|
||
|
%NNTRAIN trains a neural net
|
||
|
% [nn, L] = nnff(nn, x, y, opts) trains the neural network nn with input x and
|
||
|
% output y for opts.numepochs epochs, with minibatches of size
|
||
|
% opts.batchsize. Returns a neural network nn with updated activations,
|
||
|
% errors, weights and biases, (nn.a, nn.e, nn.W, nn.b) and L, the sum
|
||
|
% squared error for each training minibatch.
|
||
|
|
||
|
assert(isfloat(train_x), 'train_x must be a float');
|
||
|
assert(nargin == 4 || nargin == 6,'number ofinput arguments must be 4 or 6')
|
||
|
|
||
|
loss.train.e = [];
|
||
|
loss.train.e_frac = [];
|
||
|
loss.val.e = [];
|
||
|
loss.val.e_frac = [];
|
||
|
opts.validation = 0;
|
||
|
if nargin == 6
|
||
|
opts.validation = 1;
|
||
|
end
|
||
|
|
||
|
fhandle = [];
|
||
|
if isfield(opts,'plot') && opts.plot == 1
|
||
|
fhandle = figure();
|
||
|
end
|
||
|
|
||
|
m = size(train_x, 1);
|
||
|
|
||
|
batchsize = opts.batchsize;
|
||
|
numepochs = opts.numepochs;
|
||
|
|
||
|
numbatches = floor(m / batchsize);
|
||
|
|
||
|
assert(rem(numbatches, 1) == 0, 'numbatches must be a integer');
|
||
|
|
||
|
L = zeros(numepochs*numbatches,1);
|
||
|
n = 1;
|
||
|
for i = 1 : numepochs
|
||
|
tic;
|
||
|
|
||
|
kk = randperm(m);
|
||
|
for l = 1 : numbatches
|
||
|
batch_x = train_x(kk((l - 1) * batchsize + 1 : l * batchsize), :);
|
||
|
|
||
|
%Add noise to input (for use in denoising autoencoder)
|
||
|
if(nn.inputZeroMaskedFraction ~= 0)
|
||
|
batch_x = batch_x.*(rand(size(batch_x))>nn.inputZeroMaskedFraction);
|
||
|
end
|
||
|
|
||
|
batch_y = train_y(kk((l - 1) * batchsize + 1 : l * batchsize), :);
|
||
|
|
||
|
nn = nnff(nn, batch_x, batch_y);
|
||
|
nn = nnbp(nn);
|
||
|
nn = nnapplygrads(nn);
|
||
|
|
||
|
L(n) = nn.L;
|
||
|
|
||
|
n = n + 1;
|
||
|
end
|
||
|
|
||
|
t = toc;
|
||
|
|
||
|
if opts.validation == 1
|
||
|
loss = nneval(nn, loss, train_x, train_y, val_x, val_y);
|
||
|
str_perf = sprintf('; Full-batch train mse = %f, val mse = %f', loss.train.e(end), loss.val.e(end));
|
||
|
else
|
||
|
loss = nneval(nn, loss, train_x, train_y);
|
||
|
str_perf = sprintf('; Full-batch train err = %f', loss.train.e(end));
|
||
|
end
|
||
|
if ishandle(fhandle)
|
||
|
nnupdatefigures(nn, fhandle, loss, opts, i);
|
||
|
end
|
||
|
|
||
|
% disp(['epoch ' num2str(i) '/' num2str(opts.numepochs) '. Took ' num2str(t) ' seconds' '. Mini-batch mean squared error on training set is ' num2str(mean(L((n-numbatches):(n-1)))) str_perf]);
|
||
|
nn.learningRate = nn.learningRate * nn.scaling_learningRate;
|
||
|
end
|
||
|
end
|
||
|
|