2016-04-28 19:40:36 +00:00
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
|
|
|
|
|
// all rights reserved.
|
|
|
|
|
//
|
|
|
|
|
// THIS SOFTWARE IS PROVIDED <20>AS IS<49> FOR ACADEMIC USE ONLY AND ANY EXPRESS
|
|
|
|
|
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|
|
|
|
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
|
|
|
|
|
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
|
|
|
|
|
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
|
|
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
|
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
|
|
|
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
|
|
|
// POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
|
//
|
|
|
|
|
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
|
|
|
|
|
// of the Software may be covered by so-called <20>open source<63> software licenses (<28>Open Source
|
|
|
|
|
// Components<74>), which means any software licenses approved as open source licenses by the
|
|
|
|
|
// Open Source Initiative or any substantially similar licenses, including without limitation any
|
|
|
|
|
// license that, as a condition of distribution of the software licensed under such license,
|
|
|
|
|
// requires that the distributor make the software available in source code format. Licensor shall
|
|
|
|
|
// provide a list of Open Source Components for a particular version of the Software upon
|
|
|
|
|
// Licensee<65>s request. Licensee will comply with the applicable terms of such licenses and to
|
|
|
|
|
// the extent required by the licenses covering Open Source Components, the terms of such
|
|
|
|
|
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
|
|
|
|
|
// licenses applicable to Open Source Components prohibit any of the restrictions in this
|
|
|
|
|
// License Agreement with respect to such Open Source Component, such restrictions will not
|
|
|
|
|
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
|
|
|
|
|
// Open Source Components require Licensor to make an offer to provide source code or
|
|
|
|
|
// related information in connection with the Software, such offer is hereby made. Any request
|
|
|
|
|
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
|
|
|
|
|
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
|
|
|
|
|
// delivery of the Software.
|
|
|
|
|
|
|
|
|
|
// * Any publications arising from the use of this software, including but
|
|
|
|
|
// not limited to academic journal and conference publications, technical
|
|
|
|
|
// reports and manuals, must cite at least one of the following works:
|
|
|
|
|
//
|
|
|
|
|
// OpenFace: an open source facial behavior analysis toolkit
|
|
|
|
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
|
|
|
|
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|
|
|
|
//
|
|
|
|
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|
|
|
|
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|
|
|
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|
|
|
|
//
|
|
|
|
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|
|
|
|
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
|
|
|
|
|
// in Facial Expression Recognition and Analysis Challenge,
|
|
|
|
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|
|
|
|
//
|
|
|
|
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|
|
|
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
|
|
|
|
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|
|
|
|
//
|
|
|
|
|
///////////////////////////////////////////////////////////////////////////////
|
|
|
|
|
|
|
|
|
|
#include "stdafx.h"
|
|
|
|
|
|
|
|
|
|
#include "LandmarkDetectorParameters.h"
|
|
|
|
|
|
|
|
|
|
// Boost includes
|
|
|
|
|
#include <filesystem.hpp>
|
|
|
|
|
#include <filesystem/fstream.hpp>
|
|
|
|
|
|
|
|
|
|
// System includes
|
|
|
|
|
#include <sstream>
|
|
|
|
|
#include <iostream>
|
2016-12-18 00:00:41 +00:00
|
|
|
|
#include <cstdlib>
|
2016-04-28 19:40:36 +00:00
|
|
|
|
|
2016-12-29 23:36:10 +00:00
|
|
|
|
#ifndef CONFIG_DIR
|
|
|
|
|
#define CONFIG_DIR "~"
|
|
|
|
|
#endif
|
|
|
|
|
|
2016-04-28 19:40:36 +00:00
|
|
|
|
using namespace std;
|
|
|
|
|
|
|
|
|
|
using namespace LandmarkDetector;
|
|
|
|
|
|
|
|
|
|
FaceModelParameters::FaceModelParameters()
|
|
|
|
|
{
|
|
|
|
|
// initialise the default values
|
|
|
|
|
init();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
FaceModelParameters::FaceModelParameters(vector<string> &arguments)
|
|
|
|
|
{
|
|
|
|
|
// initialise the default values
|
|
|
|
|
init();
|
|
|
|
|
|
|
|
|
|
// First element is reserved for the executable location (useful for finding relative model locs)
|
|
|
|
|
boost::filesystem::path root = boost::filesystem::path(arguments[0]).parent_path();
|
|
|
|
|
|
|
|
|
|
bool* valid = new bool[arguments.size()];
|
|
|
|
|
valid[0] = true;
|
|
|
|
|
|
|
|
|
|
for (size_t i = 1; i < arguments.size(); ++i)
|
|
|
|
|
{
|
|
|
|
|
valid[i] = true;
|
|
|
|
|
|
|
|
|
|
if (arguments[i].compare("-mloc") == 0)
|
|
|
|
|
{
|
|
|
|
|
string model_loc = arguments[i + 1];
|
|
|
|
|
model_location = model_loc;
|
|
|
|
|
valid[i] = false;
|
|
|
|
|
valid[i + 1] = false;
|
|
|
|
|
i++;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
if (arguments[i].compare("-sigma") == 0)
|
|
|
|
|
{
|
|
|
|
|
stringstream data(arguments[i + 1]);
|
|
|
|
|
data >> sigma;
|
|
|
|
|
valid[i] = false;
|
|
|
|
|
valid[i + 1] = false;
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-w_reg") == 0)
|
|
|
|
|
{
|
|
|
|
|
stringstream data(arguments[i + 1]);
|
|
|
|
|
data >> weight_factor;
|
|
|
|
|
valid[i] = false;
|
|
|
|
|
valid[i + 1] = false;
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-reg") == 0)
|
|
|
|
|
{
|
|
|
|
|
stringstream data(arguments[i + 1]);
|
|
|
|
|
data >> reg_factor;
|
|
|
|
|
valid[i] = false;
|
|
|
|
|
valid[i + 1] = false;
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-multi_view") == 0)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
stringstream data(arguments[i + 1]);
|
|
|
|
|
int m_view;
|
|
|
|
|
data >> m_view;
|
|
|
|
|
|
|
|
|
|
multi_view = (bool)(m_view != 0);
|
|
|
|
|
valid[i] = false;
|
|
|
|
|
valid[i + 1] = false;
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-validate_detections") == 0)
|
|
|
|
|
{
|
|
|
|
|
stringstream data(arguments[i + 1]);
|
|
|
|
|
int v_det;
|
|
|
|
|
data >> v_det;
|
|
|
|
|
|
|
|
|
|
validate_detections = (bool)(v_det != 0);
|
|
|
|
|
valid[i] = false;
|
|
|
|
|
valid[i + 1] = false;
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-n_iter") == 0)
|
|
|
|
|
{
|
|
|
|
|
stringstream data(arguments[i + 1]);
|
|
|
|
|
data >> num_optimisation_iteration;
|
|
|
|
|
|
|
|
|
|
valid[i] = false;
|
|
|
|
|
valid[i + 1] = false;
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-gaze") == 0)
|
|
|
|
|
{
|
|
|
|
|
track_gaze = true;
|
|
|
|
|
|
|
|
|
|
valid[i] = false;
|
|
|
|
|
i++;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-q") == 0)
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
quiet_mode = true;
|
|
|
|
|
|
|
|
|
|
valid[i] = false;
|
|
|
|
|
}
|
|
|
|
|
else if (arguments[i].compare("-wild") == 0)
|
|
|
|
|
{
|
|
|
|
|
// For in the wild fitting these parameters are suitable
|
|
|
|
|
window_sizes_init = vector<int>(4);
|
|
|
|
|
window_sizes_init[0] = 15; window_sizes_init[1] = 13; window_sizes_init[2] = 11; window_sizes_init[3] = 9;
|
|
|
|
|
|
|
|
|
|
sigma = 1.25;
|
|
|
|
|
reg_factor = 35;
|
|
|
|
|
weight_factor = 2.5;
|
|
|
|
|
num_optimisation_iteration = 10;
|
|
|
|
|
|
|
|
|
|
valid[i] = false;
|
|
|
|
|
|
|
|
|
|
// For in-the-wild images use an in-the wild detector
|
|
|
|
|
curr_face_detector = HOG_SVM_DETECTOR;
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
2016-09-06 16:32:33 +00:00
|
|
|
|
for (int i = (int)arguments.size() - 1; i >= 0; --i)
|
2016-04-28 19:40:36 +00:00
|
|
|
|
{
|
|
|
|
|
if (!valid[i])
|
|
|
|
|
{
|
|
|
|
|
arguments.erase(arguments.begin() + i);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Make sure model_location is valid
|
2016-12-18 00:00:41 +00:00
|
|
|
|
// First check working directory, then the executable's directory, then the config path set by the build process.
|
|
|
|
|
boost::filesystem::path config_path = boost::filesystem::path(CONFIG_DIR);
|
|
|
|
|
boost::filesystem::path model_path = boost::filesystem::path(model_location);
|
|
|
|
|
if (boost::filesystem::exists(model_path))
|
2016-04-28 19:40:36 +00:00
|
|
|
|
{
|
2016-12-18 00:00:41 +00:00
|
|
|
|
model_location = model_path.string();
|
|
|
|
|
}
|
|
|
|
|
else if (boost::filesystem::exists(root/model_path))
|
|
|
|
|
{
|
|
|
|
|
model_location = (root/model_path).string();
|
|
|
|
|
}
|
|
|
|
|
else if (boost::filesystem::exists(config_path/model_path))
|
|
|
|
|
{
|
|
|
|
|
model_location = (config_path/model_path).string();
|
|
|
|
|
}
|
|
|
|
|
else
|
|
|
|
|
{
|
|
|
|
|
std::cout << "Could not find the landmark detection model to load" << std::endl;
|
2016-04-28 19:40:36 +00:00
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
void FaceModelParameters::init()
|
|
|
|
|
{
|
|
|
|
|
|
|
|
|
|
// number of iterations that will be performed at each scale
|
|
|
|
|
num_optimisation_iteration = 5;
|
|
|
|
|
|
|
|
|
|
// using an external face checker based on SVM
|
|
|
|
|
validate_detections = true;
|
|
|
|
|
|
|
|
|
|
// Using hierarchical refinement by default (can be turned off)
|
|
|
|
|
refine_hierarchical = true;
|
|
|
|
|
|
|
|
|
|
// Refining parameters by default
|
|
|
|
|
refine_parameters = true;
|
|
|
|
|
|
|
|
|
|
window_sizes_small = vector<int>(4);
|
|
|
|
|
window_sizes_init = vector<int>(4);
|
|
|
|
|
|
|
|
|
|
// For fast tracking
|
|
|
|
|
window_sizes_small[0] = 0;
|
|
|
|
|
window_sizes_small[1] = 9;
|
|
|
|
|
window_sizes_small[2] = 7;
|
|
|
|
|
window_sizes_small[3] = 5;
|
|
|
|
|
|
|
|
|
|
// Just for initialisation
|
|
|
|
|
window_sizes_init.at(0) = 11;
|
|
|
|
|
window_sizes_init.at(1) = 9;
|
|
|
|
|
window_sizes_init.at(2) = 7;
|
|
|
|
|
window_sizes_init.at(3) = 5;
|
|
|
|
|
|
|
|
|
|
face_template_scale = 0.3;
|
|
|
|
|
// Off by default (as it might lead to some slight inaccuracies in slowly moving faces)
|
|
|
|
|
use_face_template = false;
|
|
|
|
|
|
|
|
|
|
// For first frame use the initialisation
|
|
|
|
|
window_sizes_current = window_sizes_init;
|
|
|
|
|
|
|
|
|
|
model_location = "model/main_clnf_general.txt";
|
|
|
|
|
|
|
|
|
|
sigma = 1.5;
|
|
|
|
|
reg_factor = 25;
|
|
|
|
|
weight_factor = 0; // By default do not use NU-RLMS for videos as it does not work as well for them
|
|
|
|
|
|
|
|
|
|
validation_boundary = -0.45;
|
|
|
|
|
|
|
|
|
|
limit_pose = true;
|
|
|
|
|
multi_view = false;
|
|
|
|
|
|
|
|
|
|
reinit_video_every = 4;
|
|
|
|
|
|
|
|
|
|
// Face detection
|
|
|
|
|
#if OS_UNIX
|
|
|
|
|
face_detector_location = "classifiers/haarcascade_frontalface_alt.xml";
|
|
|
|
|
#else
|
|
|
|
|
face_detector_location = "classifiers/haarcascade_frontalface_alt.xml";
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
quiet_mode = false;
|
|
|
|
|
|
|
|
|
|
// By default use HOG SVM
|
|
|
|
|
curr_face_detector = HOG_SVM_DETECTOR;
|
|
|
|
|
|
|
|
|
|
// The gaze tracking has to be explicitly initialised
|
|
|
|
|
track_gaze = false;
|
|
|
|
|
}
|
|
|
|
|
|