2016-04-28 21:40:36 +02:00
///////////////////////////////////////////////////////////////////////////////
2017-05-09 03:36:23 +02:00
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
2016-04-28 21:40:36 +02:00
// all rights reserved.
//
2017-05-09 03:36:23 +02:00
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
2016-04-28 21:40:36 +02:00
//
2017-05-09 03:36:23 +02:00
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
2016-04-28 21:40:36 +02:00
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
2017-03-05 21:49:01 +01:00
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency
2016-04-28 21:40:36 +02:00
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
2017-03-05 21:49:01 +01:00
// Erroll Wood, Tadas Baltrušaitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
2016-04-28 21:40:36 +02:00
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
2017-03-05 21:49:01 +01:00
// Tadas Baltrušaitis, Marwa Mahmoud, and Peter Robinson
2016-04-28 21:40:36 +02:00
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
2017-03-05 21:49:01 +01:00
// Tadas Baltrušaitis, Peter Robinson, and Louis-Philippe Morency.
2016-04-28 21:40:36 +02:00
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
// FeatureExtraction.cpp : Defines the entry point for the feature extraction console application.
// System includes
# include <fstream>
# include <sstream>
// OpenCV includes
# include <opencv2/videoio/videoio.hpp> // Video write
# include <opencv2/videoio/videoio_c.h> // Video write
# include <opencv2/imgproc.hpp>
# include <opencv2/highgui/highgui.hpp>
// Boost includes
# include <filesystem.hpp>
# include <filesystem/fstream.hpp>
# include <boost/algorithm/string.hpp>
// Local includes
# include "LandmarkCoreIncludes.h"
# include <Face_utils.h>
# include <FaceAnalyser.h>
# include <GazeEstimation.h>
2017-11-01 21:29:57 +01:00
# include <RecorderOpenFace.h>
2017-11-03 17:40:07 +01:00
# include <RecorderOpenFaceParameters.h>
2017-11-08 22:35:27 +01:00
# include <SequenceCapture.h>
2016-04-28 21:40:36 +02:00
2016-12-30 00:40:03 +01:00
# ifndef CONFIG_DIR
# define CONFIG_DIR "~"
# endif
2016-04-28 21:40:36 +02:00
# define INFO_STREAM( stream ) \
std : : cout < < stream < < std : : endl
# define WARN_STREAM( stream ) \
std : : cout < < " Warning: " < < stream < < std : : endl
# define ERROR_STREAM( stream ) \
std : : cout < < " Error: " < < stream < < std : : endl
static void printErrorAndAbort ( const std : : string & error )
{
std : : cout < < error < < std : : endl ;
}
# define FATAL_STREAM( stream ) \
printErrorAndAbort ( std : : string ( " Fatal error: " ) + stream )
using namespace std ;
vector < string > get_arguments ( int argc , char * * argv )
{
vector < string > arguments ;
// First argument is reserved for the name of the executable
for ( int i = 0 ; i < argc ; + + i )
{
arguments . push_back ( string ( argv [ i ] ) ) ;
}
return arguments ;
}
2017-11-05 09:14:01 +01:00
void get_visualization_params ( bool & visualize_track , bool & visualize_align , bool & visualize_hog , vector < string > & arguments ) ;
2016-04-28 21:40:36 +02:00
2017-11-09 20:56:16 +01:00
// Some globals for tracking timing information for visualisation (TODO bit ugly)
double fps_tracker = - 1.0 ;
int64 t0 = 0 ;
int frame_count = 0 ;
2017-11-09 19:25:49 +01:00
// Visualising the results TODO separate class
2017-11-09 20:56:16 +01:00
void visualise_tracking ( cv : : Mat & captured_image , const LandmarkDetector : : CLNF & face_model , const LandmarkDetector : : FaceModelParameters & det_parameters , cv : : Point3f gazeDirection0 , cv : : Point3f gazeDirection1 , double fx , double fy , double cx , double cy )
2016-04-28 21:40:36 +02:00
{
// Drawing the facial landmarks on the face and the bounding box around it if tracking is successful and initialised
double detection_certainty = face_model . detection_certainty ;
bool detection_success = face_model . detection_success ;
2017-11-10 09:57:34 +01:00
double visualisation_boundary = 0.4 ;
2016-04-28 21:40:36 +02:00
// Only draw if the reliability is reasonable, the value is slightly ad-hoc
2017-11-10 09:57:34 +01:00
if ( detection_certainty > visualisation_boundary )
2016-04-28 21:40:36 +02:00
{
LandmarkDetector : : Draw ( captured_image , face_model ) ;
double vis_certainty = detection_certainty ;
if ( vis_certainty > 1 )
vis_certainty = 1 ;
2017-11-10 09:57:34 +01:00
// Scale from 0 to 1, to allow to indicated by colour how confident we are in the tracking
vis_certainty = ( vis_certainty - visualisation_boundary ) / ( 1 - visualisation_boundary ) ;
2016-04-28 21:40:36 +02:00
// A rough heuristic for box around the face width
int thickness = ( int ) std : : ceil ( 2.0 * ( ( double ) captured_image . cols ) / 640.0 ) ;
2017-10-24 17:26:08 +02:00
cv : : Vec6d pose_estimate_to_draw = LandmarkDetector : : GetPose ( face_model , fx , fy , cx , cy ) ;
2016-04-28 21:40:36 +02:00
// Draw it in reddish if uncertain, blueish if certain
2017-11-10 09:57:34 +01:00
LandmarkDetector : : DrawBox ( captured_image , pose_estimate_to_draw , cv : : Scalar ( vis_certainty * 255.0 , 0 , ( 1 - vis_certainty ) * 255 ) , thickness , fx , fy , cx , cy ) ;
2016-04-28 21:40:36 +02:00
if ( det_parameters . track_gaze & & detection_success & & face_model . eye_model )
{
2017-10-26 09:50:15 +02:00
GazeAnalysis : : DrawGaze ( captured_image , face_model , gazeDirection0 , gazeDirection1 , fx , fy , cx , cy ) ;
2016-04-28 21:40:36 +02:00
}
}
2017-11-09 19:25:49 +01:00
// Work out the framerate TODO
2017-11-09 20:56:16 +01:00
if ( frame_count % 10 = = 0 )
{
double t1 = cv : : getTickCount ( ) ;
fps_tracker = 10.0 / ( double ( t1 - t0 ) / cv : : getTickFrequency ( ) ) ;
t0 = t1 ;
}
2016-04-28 21:40:36 +02:00
2017-11-09 20:56:16 +01:00
// Write out the framerate on the image before displaying it
char fpsC [ 255 ] ;
std : : sprintf ( fpsC , " %d " , ( int ) fps_tracker ) ;
string fpsSt ( " FPS: " ) ;
fpsSt + = fpsC ;
cv : : putText ( captured_image , fpsSt , cv : : Point ( 10 , 20 ) , CV_FONT_HERSHEY_SIMPLEX , 0.5 , CV_RGB ( 255 , 0 , 0 ) , 1 , CV_AA ) ;
frame_count + + ;
2017-11-10 09:57:34 +01:00
2016-04-28 21:40:36 +02:00
}
2016-05-19 17:51:32 +02:00
int main ( int argc , char * * argv )
2016-04-28 21:40:36 +02:00
{
2016-05-19 17:51:32 +02:00
vector < string > arguments = get_arguments ( argc , argv ) ;
2016-04-28 21:40:36 +02:00
2017-11-05 09:14:01 +01:00
// Deciding what to visualize
2017-10-13 09:38:12 +02:00
bool visualize_track = false ;
bool visualize_align = false ;
bool visualize_hog = false ;
2017-11-05 09:14:01 +01:00
get_visualization_params ( visualize_track , visualize_align , visualize_hog , arguments ) ;
2017-11-03 10:04:00 +01:00
2017-10-23 18:58:35 +02:00
// Load the modules that are being used for tracking and face analysis
// Load face landmark detector
LandmarkDetector : : FaceModelParameters det_parameters ( arguments ) ;
// Always track gaze in feature extraction
det_parameters . track_gaze = true ;
LandmarkDetector : : CLNF face_model ( det_parameters . model_location ) ;
2016-04-28 21:40:36 +02:00
2017-10-23 18:58:35 +02:00
// Load facial feature extractor and AU analyser
FaceAnalysis : : FaceAnalyserParameters face_analysis_params ( arguments ) ;
FaceAnalysis : : FaceAnalyser face_analyser ( face_analysis_params ) ;
2017-03-08 17:46:50 +01:00
2017-11-09 19:25:49 +01:00
Utilities : : SequenceCapture sequence_reader ;
2017-11-08 22:35:27 +01:00
while ( true ) // this is not a for loop as we might also be reading from a webcam
2016-04-28 21:40:36 +02:00
{
2017-11-05 09:24:42 +01:00
2017-11-09 19:25:49 +01:00
// The sequence reader chooses what to open based on command line arguments provided
if ( ! sequence_reader . Open ( arguments ) )
2017-11-08 22:35:27 +01:00
break ;
2017-11-05 09:24:42 +01:00
2017-11-09 19:25:49 +01:00
INFO_STREAM ( " Device or file opened " ) ;
2017-11-08 22:35:27 +01:00
2016-04-28 21:40:36 +02:00
cv : : Mat captured_image ;
2017-11-08 22:35:27 +01:00
2017-11-09 19:25:49 +01:00
Utilities : : RecorderOpenFaceParameters recording_params ( arguments , true , sequence_reader . fps ) ;
2017-11-09 19:37:26 +01:00
Utilities : : RecorderOpenFace open_face_rec ( sequence_reader . name , recording_params , arguments ) ;
2016-04-28 21:40:36 +02:00
2017-11-09 19:25:49 +01:00
captured_image = sequence_reader . GetNextFrame ( ) ;
2016-04-28 21:40:36 +02:00
2017-11-09 20:56:16 +01:00
// For reporting progress
double reported_completion = 0 ;
2017-11-05 09:24:42 +01:00
INFO_STREAM ( " Starting tracking " ) ;
while ( ! captured_image . empty ( ) )
{
2016-04-28 21:40:36 +02:00
2017-11-09 19:25:49 +01:00
// Converting to grayscale
cv : : Mat_ < uchar > grayscale_image = sequence_reader . GetGrayFrame ( ) ;
2017-11-05 09:24:42 +01:00
2016-04-28 21:40:36 +02:00
// The actual facial landmark detection / tracking
2017-11-09 19:25:49 +01:00
bool detection_success = LandmarkDetector : : DetectLandmarksInVideo ( grayscale_image , face_model , det_parameters ) ;
2017-11-05 09:24:42 +01:00
2016-04-28 21:40:36 +02:00
// Gaze tracking, absolute gaze direction
cv : : Point3f gazeDirection0 ( 0 , 0 , - 1 ) ;
cv : : Point3f gazeDirection1 ( 0 , 0 , - 1 ) ;
2017-10-21 21:40:18 +02:00
cv : : Vec2d gazeAngle ( 0 , 0 ) ;
2016-04-28 21:40:36 +02:00
if ( det_parameters . track_gaze & & detection_success & & face_model . eye_model )
{
2017-11-09 19:37:26 +01:00
GazeAnalysis : : EstimateGaze ( face_model , gazeDirection0 , sequence_reader . fx , sequence_reader . fy , sequence_reader . cx , sequence_reader . cy , true ) ;
GazeAnalysis : : EstimateGaze ( face_model , gazeDirection1 , sequence_reader . fx , sequence_reader . fy , sequence_reader . cx , sequence_reader . cy , false ) ;
2017-10-26 09:50:15 +02:00
gazeAngle = GazeAnalysis : : GetGazeAngle ( gazeDirection0 , gazeDirection1 ) ;
2016-04-28 21:40:36 +02:00
}
// Do face alignment
cv : : Mat sim_warped_img ;
cv : : Mat_ < double > hog_descriptor ;
2017-11-03 17:40:07 +01:00
int num_hog_rows = 0 , num_hog_cols = 0 ;
2016-04-28 21:40:36 +02:00
2017-11-03 10:04:00 +01:00
// As this can be expensive only compute it if needed by output or visualization
2017-11-05 09:24:42 +01:00
if ( recording_params . outputAlignedFaces ( ) | | recording_params . outputHOG ( ) | | recording_params . outputAUs ( ) | | visualize_align | | visualize_hog )
2016-04-28 21:40:36 +02:00
{
2017-11-09 20:56:16 +01:00
face_analyser . AddNextFrame ( captured_image , face_model . detected_landmarks , face_model . detection_success , sequence_reader . time_stamp , false , ! det_parameters . quiet_mode ) ;
2016-04-28 21:40:36 +02:00
face_analyser . GetLatestAlignedFace ( sim_warped_img ) ;
2017-11-05 09:24:42 +01:00
if ( ! det_parameters . quiet_mode & & visualize_align )
2016-04-28 21:40:36 +02:00
{
2017-11-05 09:24:42 +01:00
cv : : imshow ( " sim_warp " , sim_warped_img ) ;
2016-04-28 21:40:36 +02:00
}
2017-11-05 09:24:42 +01:00
if ( recording_params . outputHOG ( ) | | ( visualize_hog & & ! det_parameters . quiet_mode ) )
2016-04-28 21:40:36 +02:00
{
2017-03-08 17:46:50 +01:00
face_analyser . GetLatestHOG ( hog_descriptor , num_hog_rows , num_hog_cols ) ;
2016-04-28 21:40:36 +02:00
2017-11-05 09:24:42 +01:00
if ( visualize_hog & & ! det_parameters . quiet_mode )
2016-04-28 21:40:36 +02:00
{
cv : : Mat_ < double > hog_descriptor_vis ;
FaceAnalysis : : Visualise_FHOG ( hog_descriptor , num_hog_rows , num_hog_cols , hog_descriptor_vis ) ;
2017-11-05 09:24:42 +01:00
cv : : imshow ( " hog " , hog_descriptor_vis ) ;
2016-04-28 21:40:36 +02:00
}
}
}
// Work out the pose of the head from the tracked model
2017-11-09 19:37:26 +01:00
cv : : Vec6d pose_estimate = LandmarkDetector : : GetPose ( face_model , sequence_reader . fx , sequence_reader . fy , sequence_reader . cx , sequence_reader . cy ) ;
2016-04-28 21:40:36 +02:00
2017-11-05 09:56:25 +01:00
// Drawing the visualization on the captured image
2017-11-05 09:24:42 +01:00
if ( recording_params . outputTrackedVideo ( ) | | ( visualize_track & & ! det_parameters . quiet_mode ) )
2017-10-13 09:38:12 +02:00
{
2017-11-09 20:56:16 +01:00
visualise_tracking ( captured_image , face_model , det_parameters , gazeDirection0 , gazeDirection1 , sequence_reader . fx , sequence_reader . fy , sequence_reader . cx , sequence_reader . cy ) ;
2017-10-13 09:38:12 +02:00
}
2016-04-28 21:40:36 +02:00
2017-11-03 10:04:00 +01:00
// Setting up the recorder output
2017-11-05 09:14:01 +01:00
open_face_rec . SetObservationHOG ( detection_success , hog_descriptor , num_hog_rows , num_hog_cols , 31 ) ; // The number of channels in HOG is fixed at the moment, as using FHOG
open_face_rec . SetObservationVisualization ( captured_image ) ;
open_face_rec . SetObservationActionUnits ( face_analyser . GetCurrentAUsReg ( ) , face_analyser . GetCurrentAUsClass ( ) ) ;
open_face_rec . SetObservationGaze ( gazeDirection0 , gazeDirection1 , gazeAngle , LandmarkDetector : : CalculateAllEyeLandmarks ( face_model ) ) ;
2017-11-09 20:56:16 +01:00
open_face_rec . SetObservationLandmarks ( face_model . detected_landmarks , face_model . GetShape ( sequence_reader . fx , sequence_reader . fy , sequence_reader . cx , sequence_reader . cy ) ,
face_model . params_global , face_model . params_local , face_model . detection_certainty , detection_success ) ;
2017-11-05 09:14:01 +01:00
open_face_rec . SetObservationPose ( pose_estimate ) ;
2017-11-09 20:56:16 +01:00
open_face_rec . SetObservationTimestamp ( sequence_reader . time_stamp ) ;
2017-11-09 22:28:35 +01:00
open_face_rec . SetObservationFaceAlign ( sim_warped_img ) ;
2017-11-05 09:14:01 +01:00
open_face_rec . WriteObservation ( ) ;
2016-04-28 21:40:36 +02:00
2017-11-05 09:56:25 +01:00
// Visualize the image if desired
if ( visualize_track & & ! det_parameters . quiet_mode )
{
cv : : namedWindow ( " tracking_result " , 1 ) ;
cv : : imshow ( " tracking_result " , captured_image ) ;
2017-11-10 09:57:34 +01:00
cv : : waitKey ( 1 ) ;
2017-11-05 09:56:25 +01:00
}
2017-11-03 10:04:00 +01:00
// Grabbing the next frame (todo this should be part of capture)
2017-11-09 19:25:49 +01:00
captured_image = sequence_reader . GetNextFrame ( ) ;
2017-11-10 09:57:34 +01:00
// Reporting progress
2017-11-09 20:56:16 +01:00
if ( sequence_reader . GetProgress ( ) > = reported_completion / 10.0 )
2016-04-28 21:40:36 +02:00
{
2017-11-09 20:56:16 +01:00
cout < < reported_completion * 10 < < " % " ;
reported_completion = reported_completion + 1 ;
2016-04-28 21:40:36 +02:00
}
}
2017-11-05 09:14:01 +01:00
open_face_rec . Close ( ) ;
2016-04-28 21:40:36 +02:00
2017-11-09 20:56:16 +01:00
if ( recording_params . outputAUs ( ) )
2016-04-28 21:40:36 +02:00
{
2016-06-03 22:53:27 +02:00
cout < < " Postprocessing the Action Unit predictions " < < endl ;
2017-11-05 10:21:55 +01:00
face_analyser . PostprocessOutputFile ( open_face_rec . GetCSVFile ( ) ) ;
2016-04-28 21:40:36 +02:00
}
2017-11-05 10:21:55 +01:00
2016-04-28 21:40:36 +02:00
// Reset the models for the next video
face_analyser . Reset ( ) ;
face_model . Reset ( ) ;
}
return 0 ;
}
2017-11-04 21:57:24 +01:00
void get_visualization_params ( bool & visualize_track , bool & visualize_align , bool & visualize_hog , vector < string > & arguments )
2016-05-19 17:51:32 +02:00
{
bool * valid = new bool [ arguments . size ( ) ] ;
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
valid [ i ] = true ;
}
string output_root = " " ;
2017-10-13 09:38:12 +02:00
visualize_align = false ;
visualize_hog = false ;
visualize_track = false ;
2016-05-19 17:51:32 +02:00
for ( size_t i = 0 ; i < arguments . size ( ) ; + + i )
{
2017-11-05 09:14:01 +01:00
if ( arguments [ i ] . compare ( " -verbose " ) = = 0 )
2016-05-19 17:51:32 +02:00
{
2017-10-13 09:38:12 +02:00
visualize_track = true ;
visualize_align = true ;
visualize_hog = true ;
}
else if ( arguments [ i ] . compare ( " -vis-align " ) = = 0 )
{
visualize_align = true ;
valid [ i ] = false ;
}
else if ( arguments [ i ] . compare ( " -vis-hog " ) = = 0 )
{
visualize_hog = true ;
valid [ i ] = false ;
}
else if ( arguments [ i ] . compare ( " -vis-track " ) = = 0 )
{
visualize_track = true ;
valid [ i ] = false ;
2016-05-19 17:51:32 +02:00
}
}
for ( int i = arguments . size ( ) - 1 ; i > = 0 ; - - i )
{
if ( ! valid [ i ] )
{
arguments . erase ( arguments . begin ( ) + i ) ;
}
}
}