95 lines
2.7 KiB
Mathematica
95 lines
2.7 KiB
Mathematica
|
clear
|
||
|
|
||
|
curr_dir = cd('.');
|
||
|
|
||
|
% Replace this with your downloaded 300-W train data
|
||
|
if(exist([getenv('USERPROFILE') '/Dropbox/AAM/eye_clm/mpii_data/'], 'file'))
|
||
|
database_root = [getenv('USERPROFILE') '/Dropbox/AAM/eye_clm/mpii_data/'];
|
||
|
else
|
||
|
fprintf('MPII gaze dataset not found\n');
|
||
|
end
|
||
|
output_loc = './gaze_estimates_MPII/';
|
||
|
if(~exist(output_loc, 'dir'))
|
||
|
mkdir(output_loc);
|
||
|
end
|
||
|
|
||
|
output = './mpii_out/';
|
||
|
|
||
|
%% Perform actual gaze predictions
|
||
|
command = sprintf('"../../x64/Release/FaceTrackingImg.exe" -fx 1028 -fy 1028 -gaze ');
|
||
|
p_dirs = dir([database_root, 'p*']);
|
||
|
|
||
|
parfor p=1:numel(p_dirs)
|
||
|
tic
|
||
|
|
||
|
input_loc = ['-fdir "', [database_root, p_dirs(p).name], '" '];
|
||
|
out_img_loc = ['-oidir "', [output, p_dirs(p).name], '" '];
|
||
|
out_p_loc = ['-opdir "', [output, p_dirs(p).name], '" '];
|
||
|
command_c = cat(2, command, input_loc, out_img_loc, out_p_loc);
|
||
|
|
||
|
command_c = cat(2, command_c, ' -wild');
|
||
|
dos(command_c);
|
||
|
|
||
|
end
|
||
|
%%
|
||
|
|
||
|
% Extract the results
|
||
|
predictions_l = zeros(750, 3);
|
||
|
predictions_r = zeros(750, 3);
|
||
|
gt_l = zeros(750, 3);
|
||
|
gt_r = zeros(750, 3);
|
||
|
|
||
|
angle_err_l = zeros(750,1);
|
||
|
angle_err_r = zeros(750,1);
|
||
|
|
||
|
p_dirs = dir([database_root, 'p*']);
|
||
|
curr = 1;
|
||
|
for p=1:numel(p_dirs)
|
||
|
load([database_root, p_dirs(p).name, '/Data.mat']);
|
||
|
|
||
|
for i=1:size(filenames, 1)
|
||
|
|
||
|
fname = sprintf('%s/%s/%d_%d_%d_%d_%d_%d_%d_det_0.pose', output, p_dirs(p).name,...
|
||
|
filenames(i,1), filenames(i,2), filenames(i,3), filenames(i,4),...
|
||
|
filenames(i,5), filenames(i,6), filenames(i,7));
|
||
|
try
|
||
|
A = dlmread(fname, ' ', 'A79..F79');
|
||
|
valid = true;
|
||
|
catch
|
||
|
A = zeros(1,6);
|
||
|
A(1,3) = -1;
|
||
|
A(1,6) = -1;
|
||
|
valid = false;
|
||
|
end
|
||
|
|
||
|
head_rot = headpose(i,1:3);
|
||
|
|
||
|
predictions_r(curr,:) = A(1:3);
|
||
|
predictions_l(curr,:) = A(4:6);
|
||
|
|
||
|
if(~valid)
|
||
|
predictions_r(curr,:) = [0,0,-1];
|
||
|
predictions_l(curr,:) = [0,0,-1];
|
||
|
end
|
||
|
|
||
|
gt_r(curr,:) = data.right.gaze(i,:)';
|
||
|
gt_r(curr,:) = gt_r(curr,:) / norm(gt_r(curr,:));
|
||
|
gt_l(curr,:) = data.left.gaze(i,:)';
|
||
|
gt_l(curr,:) = gt_l(curr,:) / norm(gt_l(curr,:));
|
||
|
|
||
|
angle_err_l(curr) = acos(predictions_l(curr,:) * gt_l(curr,:)') * 180/pi;
|
||
|
angle_err_r(curr) = acos(predictions_r(curr,:) * gt_r(curr,:)') * 180/pi;
|
||
|
|
||
|
curr = curr + 1;
|
||
|
end
|
||
|
|
||
|
end
|
||
|
all_errors = cat(1, angle_err_l, angle_err_r);
|
||
|
mean_error = mean(all_errors);
|
||
|
median_error = median(all_errors);
|
||
|
save('mpii_1500_errs.mat', 'all_errors', 'mean_error', 'median_error');
|
||
|
|
||
|
f = fopen('mpii_1500_errs.txt', 'w');
|
||
|
fprintf(f, 'Mean error, median error\n');
|
||
|
fprintf(f, '%.3f, %.3f\n', mean_error, median_error);
|
||
|
fclose(f);
|