sustaining_gazes/lib/local/LandmarkDetector/src/LandmarkDetectionValidator.cpp

701 lines
19 KiB
C++
Raw Normal View History

2016-04-28 19:40:36 +00:00
///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2017, Carnegie Mellon University and University of Cambridge,
2016-04-28 19:40:36 +00:00
// all rights reserved.
//
// ACADEMIC OR NON-PROFIT ORGANIZATION NONCOMMERCIAL RESEARCH USE ONLY
//
// BY USING OR DOWNLOADING THE SOFTWARE, YOU ARE AGREEING TO THE TERMS OF THIS LICENSE AGREEMENT.
// IF YOU DO NOT AGREE WITH THESE TERMS, YOU MAY NOT USE OR DOWNLOAD THE SOFTWARE.
//
// License can be found in OpenFace-license.txt
2016-04-28 19:40:36 +00:00
//
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
#include "stdafx.h"
#include "LandmarkDetectionValidator.h"
// OpenCV includes
#include <opencv2/core/core.hpp>
#include <opencv2/imgproc.hpp>
// System includes
#include <fstream>
// Math includes
#define _USE_MATH_DEFINES
#include <cmath>
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
// Local includes
#include "LandmarkDetectorUtils.h"
using namespace LandmarkDetector;
// Copy constructor
DetectionValidator::DetectionValidator(const DetectionValidator& other) : orientations(other.orientations), bs(other.bs), paws(other.paws),
cnn_subsampling_layers(other.cnn_subsampling_layers), cnn_layer_types(other.cnn_layer_types), cnn_fully_connected_layers_bias(other.cnn_fully_connected_layers_bias),
cnn_convolutional_layers_bias(other.cnn_convolutional_layers_bias), cnn_convolutional_layers_dft(other.cnn_convolutional_layers_dft)
{
this->validator_type = other.validator_type;
this->activation_fun = other.activation_fun;
this->output_fun = other.output_fun;
this->ws.resize(other.ws.size());
for (size_t i = 0; i < other.ws.size(); ++i)
{
// Make sure the matrix is copied.
this->ws[i] = other.ws[i].clone();
}
this->ws_nn.resize(other.ws_nn.size());
for (size_t i = 0; i < other.ws_nn.size(); ++i)
{
this->ws_nn[i].resize(other.ws_nn[i].size());
for (size_t k = 0; k < other.ws_nn[i].size(); ++k)
{
// Make sure the matrix is copied.
this->ws_nn[i][k] = other.ws_nn[i][k].clone();
}
}
this->cnn_convolutional_layers.resize(other.cnn_convolutional_layers.size());
for (size_t v = 0; v < other.cnn_convolutional_layers.size(); ++v)
{
this->cnn_convolutional_layers[v].resize(other.cnn_convolutional_layers[v].size());
for (size_t l = 0; l < other.cnn_convolutional_layers[v].size(); ++l)
{
this->cnn_convolutional_layers[v][l].resize(other.cnn_convolutional_layers[v][l].size());
for (size_t i = 0; i < other.cnn_convolutional_layers[v][l].size(); ++i)
{
this->cnn_convolutional_layers[v][l][i].resize(other.cnn_convolutional_layers[v][l][i].size());
for (size_t k = 0; k < other.cnn_convolutional_layers[v][l][i].size(); ++k)
{
// Make sure the matrix is copied.
this->cnn_convolutional_layers[v][l][i][k] = other.cnn_convolutional_layers[v][l][i][k].clone();
}
}
}
}
this->cnn_fully_connected_layers.resize(other.cnn_fully_connected_layers.size());
for (size_t v = 0; v < other.cnn_fully_connected_layers.size(); ++v)
{
this->cnn_fully_connected_layers[v].resize(other.cnn_fully_connected_layers[v].size());
for (size_t l = 0; l < other.cnn_fully_connected_layers[v].size(); ++l)
{
// Make sure the matrix is copied.
this->cnn_fully_connected_layers[v][l] = other.cnn_fully_connected_layers[v][l].clone();
}
}
this->mean_images.resize(other.mean_images.size());
for (size_t i = 0; i < other.mean_images.size(); ++i)
{
// Make sure the matrix is copied.
this->mean_images[i] = other.mean_images[i].clone();
}
this->standard_deviations.resize(other.standard_deviations.size());
for (size_t i = 0; i < other.standard_deviations.size(); ++i)
{
// Make sure the matrix is copied.
this->standard_deviations[i] = other.standard_deviations[i].clone();
}
}
//===========================================================================
// Read in the landmark detection validation module
void DetectionValidator::Read(string location)
{
ifstream detection_validator_stream (location, ios::in|ios::binary);
if (detection_validator_stream.is_open())
{
detection_validator_stream.seekg (0, ios::beg);
// Read validator type
detection_validator_stream.read ((char*)&validator_type, 4);
// Read the number of views (orientations) within the validator
int n;
detection_validator_stream.read ((char*)&n, 4);
orientations.resize(n);
for(int i = 0; i < n; i++)
{
cv::Mat_<double> orientation_tmp;
LandmarkDetector::ReadMatBin(detection_validator_stream, orientation_tmp);
orientations[i] = cv::Vec3d(orientation_tmp.at<double>(0), orientation_tmp.at<double>(1), orientation_tmp.at<double>(2));
// Convert from degrees to radians
orientations[i] = orientations[i] * M_PI / 180.0;
}
// Initialise the piece-wise affine warps, biases and weights
paws.resize(n);
if( validator_type == 0)
{
// Reading in SVRs
bs.resize(n);
ws.resize(n);
}
else if(validator_type == 1)
{
// Reading in NNs
ws_nn.resize(n);
activation_fun.resize(n);
output_fun.resize(n);
}
else if(validator_type == 2)
{
cnn_convolutional_layers.resize(n);
cnn_convolutional_layers_dft.resize(n);
cnn_subsampling_layers.resize(n);
cnn_fully_connected_layers.resize(n);
cnn_layer_types.resize(n);
cnn_fully_connected_layers_bias.resize(n);
cnn_convolutional_layers_bias.resize(n);
}
// Initialise the normalisation terms
mean_images.resize(n);
standard_deviations.resize(n);
// Read in the validators for each of the views
for(int i = 0; i < n; i++)
{
// Read in the mean images
LandmarkDetector::ReadMatBin(detection_validator_stream, mean_images[i]);
mean_images[i] = mean_images[i].t();
LandmarkDetector::ReadMatBin(detection_validator_stream, standard_deviations[i]);
standard_deviations[i] = standard_deviations[i].t();
// Model specifics
if(validator_type == 0)
{
// Reading in the biases and weights
detection_validator_stream.read ((char*)&bs[i], 8);
LandmarkDetector::ReadMatBin(detection_validator_stream, ws[i]);
}
else if(validator_type == 1)
{
// Reading in the number of layers in the neural net
int num_depth_layers;
detection_validator_stream.read ((char*)&num_depth_layers, 4);
// Reading in activation and output function types
detection_validator_stream.read ((char*)&activation_fun[i], 4);
detection_validator_stream.read ((char*)&output_fun[i], 4);
ws_nn[i].resize(num_depth_layers);
for(int layer = 0; layer < num_depth_layers; layer++)
{
LandmarkDetector::ReadMatBin(detection_validator_stream, ws_nn[i][layer]);
// Transpose for efficiency during multiplication
ws_nn[i][layer] = ws_nn[i][layer].t();
}
}
else if(validator_type == 2)
{
// Reading in CNNs
int network_depth;
detection_validator_stream.read ((char*)&network_depth, 4);
cnn_layer_types[i].resize(network_depth);
for(int layer = 0; layer < network_depth; ++layer)
{
int layer_type;
detection_validator_stream.read ((char*)&layer_type, 4);
cnn_layer_types[i][layer] = layer_type;
// convolutional
if(layer_type == 0)
{
// Read the number of input maps
int num_in_maps;
detection_validator_stream.read ((char*)&num_in_maps, 4);
// Read the number of kernels for each input map
int num_kernels;
detection_validator_stream.read ((char*)&num_kernels, 4);
vector<vector<cv::Mat_<float> > > kernels;
vector<vector<pair<int, cv::Mat_<double> > > > kernel_dfts;
kernels.resize(num_in_maps);
kernel_dfts.resize(num_in_maps);
vector<float> biases;
for (int k = 0; k < num_kernels; ++k)
{
float bias;
detection_validator_stream.read ((char*)&bias, 4);
biases.push_back(bias);
}
cnn_convolutional_layers_bias[i].push_back(biases);
// For every input map
for (int in = 0; in < num_in_maps; ++in)
{
kernels[in].resize(num_kernels);
kernel_dfts[in].resize(num_kernels);
// For every kernel on that input map
for (int k = 0; k < num_kernels; ++k)
{
ReadMatBin(detection_validator_stream, kernels[in][k]);
// Flip the kernel in order to do convolution and not correlation
cv::flip(kernels[in][k], kernels[in][k], -1);
}
}
cnn_convolutional_layers[i].push_back(kernels);
cnn_convolutional_layers_dft[i].push_back(kernel_dfts);
}
else if(layer_type == 1)
{
// Subsampling layer
int scale;
detection_validator_stream.read ((char*)&scale, 4);
cnn_subsampling_layers[i].push_back(scale);
}
else if(layer_type == 2)
{
float bias;
detection_validator_stream.read ((char*)&bias, 4);
cnn_fully_connected_layers_bias[i].push_back(bias);
// Fully connected layer
cv::Mat_<float> weights;
ReadMatBin(detection_validator_stream, weights);
cnn_fully_connected_layers[i].push_back(weights);
}
}
}
// Read in the piece-wise affine warps
paws[i].Read(detection_validator_stream);
}
}
else
{
cout << "WARNING: Can't find the Face checker location" << endl;
}
}
//===========================================================================
// Check if the fitting actually succeeded
double DetectionValidator::Check(const cv::Vec3d& orientation, const cv::Mat_<uchar>& intensity_img, cv::Mat_<double>& detected_landmarks)
{
int id = GetViewId(orientation);
// The warped (cropped) image, corresponding to a face lying withing the detected lanmarks
cv::Mat_<double> warped;
// the piece-wise affine image
cv::Mat_<double> intensity_img_double;
intensity_img.convertTo(intensity_img_double, CV_64F);
paws[id].Warp(intensity_img_double, warped, detected_landmarks);
double dec;
if(validator_type == 0)
{
dec = CheckSVR(warped, id);
}
else if(validator_type == 1)
{
dec = CheckNN(warped, id);
}
else if(validator_type == 2)
{
dec = CheckCNN(warped, id);
}
return dec;
}
double DetectionValidator::CheckNN(const cv::Mat_<double>& warped_img, int view_id)
{
cv::Mat_<double> feature_vec;
NormaliseWarpedToVector(warped_img, feature_vec, view_id);
feature_vec = feature_vec.t();
for(size_t layer = 0; layer < ws_nn[view_id].size(); ++layer)
{
// Add a bias term
cv::hconcat(cv::Mat_<double>(1,1, 1.0), feature_vec, feature_vec);
// Apply the weights
feature_vec = feature_vec * ws_nn[view_id][layer];
// Activation or output
int fun_type;
if(layer != ws_nn[view_id].size() - 1)
{
fun_type = activation_fun[view_id];
}
else
{
fun_type = output_fun[view_id];
}
if(fun_type == 0)
{
cv::exp(-feature_vec, feature_vec);
feature_vec = 1.0 /(1.0 + feature_vec);
}
else if(fun_type == 1)
{
cv::MatIterator_<double> q1 = feature_vec.begin(); // respone for each pixel
cv::MatIterator_<double> q2 = feature_vec.end();
// the logistic function (sigmoid) applied to the response
while(q1 != q2)
{
*q1 = 1.7159 * tanh((2.0/3.0) * (*q1));
q1++;
}
}
// TODO ReLU
}
// Turn it to -1, 1 range
double dec = (feature_vec.at<double>(0) - 0.5) * 2;
return dec;
}
double DetectionValidator::CheckSVR(const cv::Mat_<double>& warped_img, int view_id)
{
cv::Mat_<double> feature_vec;
NormaliseWarpedToVector(warped_img, feature_vec, view_id);
double dec = (ws[view_id].dot(feature_vec.t()) + bs[view_id]);
return dec;
}
// Convolutional Neural Network
double DetectionValidator::CheckCNN(const cv::Mat_<double>& warped_img, int view_id)
{
cv::Mat_<double> feature_vec;
NormaliseWarpedToVector(warped_img, feature_vec, view_id);
// Create a normalised image from the crop vector
cv::Mat_<float> img(warped_img.size(), 0.0);
img = img.t();
cv::Mat mask = paws[view_id].pixel_mask.t();
cv::MatIterator_<uchar> mask_it = mask.begin<uchar>();
cv::MatIterator_<double> feature_it = feature_vec.begin();
cv::MatIterator_<float> img_it = img.begin();
int wInt = img.cols;
int hInt = img.rows;
for(int i=0; i < wInt; ++i)
{
for(int j=0; j < hInt; ++j, ++mask_it, ++img_it)
{
// if is within mask
if(*mask_it)
{
// assign the feature to image if it is within the mask
*img_it = (float)*feature_it++;
}
}
}
img = img.t();
int cnn_layer = 0;
int subsample_layer = 0;
int fully_connected_layer = 0;
vector<cv::Mat_<float> > input_maps;
input_maps.push_back(img);
vector<cv::Mat_<float> > outputs;
for(size_t layer = 0; layer < cnn_layer_types[view_id].size(); ++layer)
{
// Determine layer type
int layer_type = cnn_layer_types[view_id][layer];
// Convolutional layer
if(layer_type == 0)
{
vector<cv::Mat_<float> > outputs_kern;
for(size_t in = 0; in < input_maps.size(); ++in)
{
cv::Mat_<float> input_image = input_maps[in];
// Useful precomputed data placeholders for quick correlation (convolution)
cv::Mat_<double> input_image_dft;
cv::Mat integral_image;
cv::Mat integral_image_sq;
for(size_t k = 0; k < cnn_convolutional_layers[view_id][cnn_layer][in].size(); ++k)
{
cv::Mat_<float> kernel = cnn_convolutional_layers[view_id][cnn_layer][in][k];
// The convolution (with precomputation)
cv::Mat_<float> output;
if(cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second.empty())
{
std::map<int, cv::Mat_<double> > precomputed_dft;
LandmarkDetector::matchTemplate_m(input_image, input_image_dft, integral_image, integral_image_sq, kernel, precomputed_dft, output, CV_TM_CCORR);
cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].first = precomputed_dft.begin()->first;
cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second = precomputed_dft.begin()->second;
}
else
{
std::map<int, cv::Mat_<double> > precomputed_dft;
precomputed_dft[cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].first] = cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second;
LandmarkDetector::matchTemplate_m(input_image, input_image_dft, integral_image, integral_image_sq, kernel, precomputed_dft, output, CV_TM_CCORR);
}
// Combining the maps
if(in == 0)
{
outputs_kern.push_back(output);
}
else
{
outputs_kern[k] = outputs_kern[k] + output;
}
}
}
outputs.clear();
for(size_t k = 0; k < cnn_convolutional_layers[view_id][cnn_layer][0].size(); ++k)
{
// Apply the sigmoid
cv::exp(-outputs_kern[k] - cnn_convolutional_layers_bias[view_id][cnn_layer][k], outputs_kern[k]);
outputs_kern[k] = 1.0 /(1.0 + outputs_kern[k]);
outputs.push_back(outputs_kern[k]);
}
cnn_layer++;
}
if(layer_type == 1)
{
// Subsampling layer
int scale = cnn_subsampling_layers[view_id][subsample_layer];
cv::Mat kx = cv::Mat::ones(2, 1, CV_32F)*1.0f/scale;
cv::Mat ky = cv::Mat::ones(1, 2, CV_32F)*1.0f/scale;
vector<cv::Mat_<float>> outputs_sub;
for(size_t in = 0; in < input_maps.size(); ++in)
{
cv::Mat_<float> conv_out;
cv::sepFilter2D(input_maps[in], conv_out, CV_32F, kx, ky);
conv_out = conv_out(cv::Rect(1, 1, conv_out.cols - 1, conv_out.rows - 1));
int res_rows = conv_out.rows / scale;
int res_cols = conv_out.cols / scale;
if(conv_out.rows % scale != 0)
{
res_rows++;
}
if(conv_out.cols % scale != 0)
{
res_cols++;
}
cv::Mat_<float> sub_out(res_rows, res_cols);
for(int w = 0; w < conv_out.cols; w+=scale)
{
for(int h=0; h < conv_out.rows; h+=scale)
{
sub_out.at<float>(h/scale, w/scale) = conv_out(h, w);
}
}
outputs_sub.push_back(sub_out);
}
outputs = outputs_sub;
subsample_layer++;
}
if(layer_type == 2)
{
// Concatenate all the maps
cv::Mat_<float> input_concat = input_maps[0].t();
input_concat = input_concat.reshape(0, 1);
for(size_t in = 1; in < input_maps.size(); ++in)
{
cv::Mat_<float> add = input_maps[in].t();
add = add.reshape(0,1);
cv::hconcat(input_concat, add, input_concat);
}
input_concat = input_concat * cnn_fully_connected_layers[view_id][fully_connected_layer].t();
cv::exp(-input_concat - cnn_fully_connected_layers_bias[view_id][fully_connected_layer], input_concat);
input_concat = 1.0 /(1.0 + input_concat);
outputs.clear();
outputs.push_back(input_concat);
fully_connected_layer++;
}
// Set the outputs of this layer to inputs of the next
input_maps = outputs;
}
// Turn it to -1, 1 range
double dec = (outputs[0].at<float>(0) - 0.5) * 2.0;
return dec;
}
void DetectionValidator::NormaliseWarpedToVector(const cv::Mat_<double>& warped_img, cv::Mat_<double>& feature_vec, int view_id)
{
cv::Mat_<double> warped_t = warped_img.t();
// the vector to be filled with paw values
cv::MatIterator_<double> vp;
cv::MatIterator_<double> cp;
cv::Mat_<double> vec(paws[view_id].number_of_pixels,1);
vp = vec.begin();
cp = warped_t.begin();
int wInt = warped_img.cols;
int hInt = warped_img.rows;
// the mask indicating if point is within or outside the face region
cv::Mat maskT = paws[view_id].pixel_mask.t();
cv::MatIterator_<uchar> mp = maskT.begin<uchar>();
for(int i=0; i < wInt; ++i)
{
for(int j=0; j < hInt; ++j, ++mp, ++cp)
{
// if is within mask
if(*mp)
{
*vp++ = *cp;
}
}
}
// Local normalisation
cv::Scalar mean;
cv::Scalar std;
cv::meanStdDev(vec, mean, std);
// subtract the mean image
vec -= mean[0];
// Normalise the image
if(std[0] == 0)
{
std[0] = 1;
}
vec /= std[0];
// Global normalisation
feature_vec = (vec - mean_images[view_id]) / standard_deviations[view_id];
}
// Getting the closest view center based on orientation
int DetectionValidator::GetViewId(const cv::Vec3d& orientation) const
{
int id = 0;
double dbest = -1.0;
for(size_t i = 0; i < this->orientations.size(); i++)
{
// Distance to current view
double d = cv::norm(orientation, this->orientations[i]);
if(i == 0 || d < dbest)
{
dbest = d;
id = i;
}
}
return id;
}