126 lines
4.3 KiB
Mathematica
126 lines
4.3 KiB
Mathematica
|
clear
|
||
|
addpath('../PDM_helpers/');
|
||
|
addpath(genpath('../fitting/'));
|
||
|
addpath('../models/');
|
||
|
addpath(genpath('../face_detection'));
|
||
|
addpath('../CCNF/');
|
||
|
|
||
|
%% loading the patch experts
|
||
|
|
||
|
[clmParams, pdm] = Load_CLM_params_wild();
|
||
|
|
||
|
[clmParams_eye, pdm_eye] = Load_CLM_params_eye();
|
||
|
|
||
|
% An accurate CCNF (or CLNF) model
|
||
|
% [patches] = Load_Patch_Experts( '../models/general/', 'ccnf_patches_*_general.mat', [], [], clmParams);
|
||
|
% A simpler (but less accurate SVR)
|
||
|
[patches] = Load_Patch_Experts( '../models/general/', 'svr_patches_*_general.mat', [], [], clmParams);
|
||
|
|
||
|
[patches_eye] = Load_Patch_Experts( 'C:\Users\Tadas\Dropbox\AAM\patch_experts_eyes\svr_training\trained/', 'svr_patches_*_synth.mat', [], [], clmParams);
|
||
|
|
||
|
clmParams.multi_modal_types = patches(1).multi_modal_types;
|
||
|
|
||
|
clmParams_eye.multi_modal_types = patches_eye(1).multi_modal_types;
|
||
|
|
||
|
%%
|
||
|
root_dir = 'C:\Users\Tadas\Dropbox\AAM\test data\gaze_original\p00/';
|
||
|
images = dir([root_dir, '*.jpg']);
|
||
|
|
||
|
verbose = true;
|
||
|
|
||
|
for img=1:numel(images)
|
||
|
image_orig = imread([root_dir images(img).name]);
|
||
|
|
||
|
% First attempt to use the Matlab one (fastest but not as accurate, if not present use yu et al.)
|
||
|
% [bboxs, det_shapes] = detect_faces(image_orig, {'cascade', 'yu'});
|
||
|
% Zhu and Ramanan and Yu et al. are slower, but also more accurate
|
||
|
% and can be used when vision toolbox is unavailable
|
||
|
% [bboxs, det_shapes] = detect_faces(image_orig, {'yu', 'zhu'});
|
||
|
|
||
|
% The complete set that tries all three detectors starting with fastest
|
||
|
% and moving onto slower ones if fastest can't detect anything
|
||
|
[bboxs, det_shapes] = detect_faces(image_orig, {'cascade', 'yu', 'zhu'});
|
||
|
|
||
|
if(size(image_orig,3) == 3)
|
||
|
image = rgb2gray(image_orig);
|
||
|
end
|
||
|
|
||
|
%%
|
||
|
|
||
|
if(verbose)
|
||
|
f = figure;
|
||
|
if(max(image(:)) > 1)
|
||
|
imshow(double(image_orig)/255, 'Border', 'tight');
|
||
|
else
|
||
|
imshow(double(image_orig), 'Border', 'tight');
|
||
|
end
|
||
|
axis equal;
|
||
|
hold on;
|
||
|
end
|
||
|
|
||
|
for i=1:size(bboxs,2)
|
||
|
|
||
|
% Convert from the initial detected shape to CLM model parameters,
|
||
|
% if shape is available
|
||
|
|
||
|
bbox = bboxs(:,i);
|
||
|
|
||
|
if(~isempty(det_shapes))
|
||
|
shape = det_shapes(:,:,i);
|
||
|
inds = [1:60,62:64,66:68];
|
||
|
M = pdm.M([inds, inds+68, inds+68*2]);
|
||
|
E = pdm.E;
|
||
|
V = pdm.V([inds, inds+68, inds+68*2],:);
|
||
|
[ a, R, T, ~, params, err, shapeOrtho] = fit_PDM_ortho_proj_to_2D(M, E, V, shape);
|
||
|
g_param = [a; Rot2Euler(R)'; T];
|
||
|
l_param = params;
|
||
|
|
||
|
% Use the initial global and local params for clm fitting in the image
|
||
|
[shape,~,~,lhood,lmark_lhood,view_used] = Fitting_from_bb(image, [], bbox, pdm, patches, clmParams, 'gparam', g_param, 'lparam', l_param);
|
||
|
else
|
||
|
[shape,~,~,lhood,lmark_lhood,view_used] = Fitting_from_bb(image, [], bbox, pdm, patches, clmParams);
|
||
|
end
|
||
|
|
||
|
% shape correction for matlab format
|
||
|
shape = shape + 1;
|
||
|
|
||
|
if(verbose)
|
||
|
|
||
|
% valid points to draw (not to draw self-occluded ones)
|
||
|
v_points = logical(patches(1).visibilities(view_used,:));
|
||
|
|
||
|
try
|
||
|
|
||
|
plot(shape(v_points,1), shape(v_points',2),'.r','MarkerSize',20);
|
||
|
plot(shape(v_points,1), shape(v_points',2),'.b','MarkerSize',10);
|
||
|
|
||
|
catch warn
|
||
|
|
||
|
end
|
||
|
end
|
||
|
|
||
|
% Map from detected landmarks to eye params
|
||
|
shape_r_eye = zeros(20,2);
|
||
|
shape_r_eye([9,11,13,15,17,19],:) = shape([43,44,45,46,47,48], :);
|
||
|
|
||
|
[ a, R, T, ~, params, err, shapeOrtho] = fit_PDM_ortho_proj_to_2D(pdm_eye.M, pdm_eye.E, pdm_eye.V, shape_r_eye);
|
||
|
|
||
|
g_param = [a; Rot2Euler(R)'; T];
|
||
|
l_param = params;
|
||
|
|
||
|
% Use the initial global and local params for clm fitting in the image
|
||
|
patches_eye(1).visibilities(1:8) = 0;
|
||
|
patches_eye(2).visibilities(1:8) = 0;
|
||
|
patches_eye(3).visibilities(1:8) = 0;
|
||
|
[shape_eye,~,~,lhood,lmark_lhood,view_used] = Fitting_from_bb(image, [], bbox, pdm_eye, patches_eye, clmParams_eye, 'gparam', g_param, 'lparam', l_param);
|
||
|
|
||
|
plot(shape_eye(:,1), shape_eye(:,2), '.g', 'MarkerSize',15);
|
||
|
% % Now do the eyes
|
||
|
% min_x = shape(43,1);
|
||
|
% max_x = shape(43,1);
|
||
|
% bbox_eye = shape(43,1)
|
||
|
|
||
|
end
|
||
|
hold off;
|
||
|
|
||
|
end
|