725 lines
21 KiB
C++
725 lines
21 KiB
C++
|
///////////////////////////////////////////////////////////////////////////////
|
|||
|
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
|
|||
|
// all rights reserved.
|
|||
|
//
|
|||
|
// THIS SOFTWARE IS PROVIDED <20>AS IS<49> FOR ACADEMIC USE ONLY AND ANY EXPRESS
|
|||
|
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
|
|||
|
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|||
|
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
|
|||
|
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
|
|||
|
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|||
|
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|||
|
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|||
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|||
|
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|||
|
// POSSIBILITY OF SUCH DAMAGE.
|
|||
|
//
|
|||
|
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
|
|||
|
// of the Software may be covered by so-called <20>open source<63> software licenses (<28>Open Source
|
|||
|
// Components<74>), which means any software licenses approved as open source licenses by the
|
|||
|
// Open Source Initiative or any substantially similar licenses, including without limitation any
|
|||
|
// license that, as a condition of distribution of the software licensed under such license,
|
|||
|
// requires that the distributor make the software available in source code format. Licensor shall
|
|||
|
// provide a list of Open Source Components for a particular version of the Software upon
|
|||
|
// Licensee<65>s request. Licensee will comply with the applicable terms of such licenses and to
|
|||
|
// the extent required by the licenses covering Open Source Components, the terms of such
|
|||
|
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
|
|||
|
// licenses applicable to Open Source Components prohibit any of the restrictions in this
|
|||
|
// License Agreement with respect to such Open Source Component, such restrictions will not
|
|||
|
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
|
|||
|
// Open Source Components require Licensor to make an offer to provide source code or
|
|||
|
// related information in connection with the Software, such offer is hereby made. Any request
|
|||
|
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
|
|||
|
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
|
|||
|
// delivery of the Software.
|
|||
|
|
|||
|
// * Any publications arising from the use of this software, including but
|
|||
|
// not limited to academic journal and conference publications, technical
|
|||
|
// reports and manuals, must cite at least one of the following works:
|
|||
|
//
|
|||
|
// OpenFace: an open source facial behavior analysis toolkit
|
|||
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
|
|||
|
// in IEEE Winter Conference on Applications of Computer Vision, 2016
|
|||
|
//
|
|||
|
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
|
|||
|
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
|
|||
|
// in IEEE International. Conference on Computer Vision (ICCV), 2015
|
|||
|
//
|
|||
|
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
|
|||
|
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
|
|||
|
// in Facial Expression Recognition and Analysis Challenge,
|
|||
|
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
|
|||
|
//
|
|||
|
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
|
|||
|
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
|
|||
|
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
|
|||
|
//
|
|||
|
///////////////////////////////////////////////////////////////////////////////
|
|||
|
|
|||
|
#include "stdafx.h"
|
|||
|
|
|||
|
#include "LandmarkDetectionValidator.h"
|
|||
|
|
|||
|
// OpenCV includes
|
|||
|
#include <opencv2/core/core.hpp>
|
|||
|
#include <opencv2/imgproc.hpp>
|
|||
|
|
|||
|
// System includes
|
|||
|
#include <fstream>
|
|||
|
|
|||
|
// Math includes
|
|||
|
#define _USE_MATH_DEFINES
|
|||
|
#include <cmath>
|
|||
|
|
|||
|
#ifndef M_PI
|
|||
|
#define M_PI 3.14159265358979323846
|
|||
|
#endif
|
|||
|
// Local includes
|
|||
|
#include "LandmarkDetectorUtils.h"
|
|||
|
|
|||
|
using namespace LandmarkDetector;
|
|||
|
|
|||
|
// Copy constructor
|
|||
|
DetectionValidator::DetectionValidator(const DetectionValidator& other) : orientations(other.orientations), bs(other.bs), paws(other.paws),
|
|||
|
cnn_subsampling_layers(other.cnn_subsampling_layers), cnn_layer_types(other.cnn_layer_types), cnn_fully_connected_layers_bias(other.cnn_fully_connected_layers_bias),
|
|||
|
cnn_convolutional_layers_bias(other.cnn_convolutional_layers_bias), cnn_convolutional_layers_dft(other.cnn_convolutional_layers_dft)
|
|||
|
{
|
|||
|
|
|||
|
this->validator_type = other.validator_type;
|
|||
|
|
|||
|
this->activation_fun = other.activation_fun;
|
|||
|
this->output_fun = other.output_fun;
|
|||
|
|
|||
|
this->ws.resize(other.ws.size());
|
|||
|
for (size_t i = 0; i < other.ws.size(); ++i)
|
|||
|
{
|
|||
|
// Make sure the matrix is copied.
|
|||
|
this->ws[i] = other.ws[i].clone();
|
|||
|
}
|
|||
|
|
|||
|
this->ws_nn.resize(other.ws_nn.size());
|
|||
|
for (size_t i = 0; i < other.ws_nn.size(); ++i)
|
|||
|
{
|
|||
|
this->ws_nn[i].resize(other.ws_nn[i].size());
|
|||
|
|
|||
|
for (size_t k = 0; k < other.ws_nn[i].size(); ++k)
|
|||
|
{
|
|||
|
// Make sure the matrix is copied.
|
|||
|
this->ws_nn[i][k] = other.ws_nn[i][k].clone();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
this->cnn_convolutional_layers.resize(other.cnn_convolutional_layers.size());
|
|||
|
for (size_t v = 0; v < other.cnn_convolutional_layers.size(); ++v)
|
|||
|
{
|
|||
|
this->cnn_convolutional_layers[v].resize(other.cnn_convolutional_layers[v].size());
|
|||
|
|
|||
|
for (size_t l = 0; l < other.cnn_convolutional_layers[v].size(); ++l)
|
|||
|
{
|
|||
|
this->cnn_convolutional_layers[v][l].resize(other.cnn_convolutional_layers[v][l].size());
|
|||
|
|
|||
|
for (size_t i = 0; i < other.cnn_convolutional_layers[v][l].size(); ++i)
|
|||
|
{
|
|||
|
this->cnn_convolutional_layers[v][l][i].resize(other.cnn_convolutional_layers[v][l][i].size());
|
|||
|
|
|||
|
for (size_t k = 0; k < other.cnn_convolutional_layers[v][l][i].size(); ++k)
|
|||
|
{
|
|||
|
// Make sure the matrix is copied.
|
|||
|
this->cnn_convolutional_layers[v][l][i][k] = other.cnn_convolutional_layers[v][l][i][k].clone();
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
this->cnn_fully_connected_layers.resize(other.cnn_fully_connected_layers.size());
|
|||
|
for (size_t v = 0; v < other.cnn_fully_connected_layers.size(); ++v)
|
|||
|
{
|
|||
|
this->cnn_fully_connected_layers[v].resize(other.cnn_fully_connected_layers[v].size());
|
|||
|
|
|||
|
for (size_t l = 0; l < other.cnn_fully_connected_layers[v].size(); ++l)
|
|||
|
{
|
|||
|
// Make sure the matrix is copied.
|
|||
|
this->cnn_fully_connected_layers[v][l] = other.cnn_fully_connected_layers[v][l].clone();
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
this->mean_images.resize(other.mean_images.size());
|
|||
|
for (size_t i = 0; i < other.mean_images.size(); ++i)
|
|||
|
{
|
|||
|
// Make sure the matrix is copied.
|
|||
|
this->mean_images[i] = other.mean_images[i].clone();
|
|||
|
}
|
|||
|
|
|||
|
this->standard_deviations.resize(other.standard_deviations.size());
|
|||
|
for (size_t i = 0; i < other.standard_deviations.size(); ++i)
|
|||
|
{
|
|||
|
// Make sure the matrix is copied.
|
|||
|
this->standard_deviations[i] = other.standard_deviations[i].clone();
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
//===========================================================================
|
|||
|
// Read in the landmark detection validation module
|
|||
|
void DetectionValidator::Read(string location)
|
|||
|
{
|
|||
|
|
|||
|
ifstream detection_validator_stream (location, ios::in|ios::binary);
|
|||
|
if (detection_validator_stream.is_open())
|
|||
|
{
|
|||
|
detection_validator_stream.seekg (0, ios::beg);
|
|||
|
|
|||
|
// Read validator type
|
|||
|
detection_validator_stream.read ((char*)&validator_type, 4);
|
|||
|
|
|||
|
// Read the number of views (orientations) within the validator
|
|||
|
int n;
|
|||
|
detection_validator_stream.read ((char*)&n, 4);
|
|||
|
|
|||
|
orientations.resize(n);
|
|||
|
|
|||
|
for(int i = 0; i < n; i++)
|
|||
|
{
|
|||
|
cv::Mat_<double> orientation_tmp;
|
|||
|
LandmarkDetector::ReadMatBin(detection_validator_stream, orientation_tmp);
|
|||
|
|
|||
|
orientations[i] = cv::Vec3d(orientation_tmp.at<double>(0), orientation_tmp.at<double>(1), orientation_tmp.at<double>(2));
|
|||
|
|
|||
|
// Convert from degrees to radians
|
|||
|
orientations[i] = orientations[i] * M_PI / 180.0;
|
|||
|
}
|
|||
|
|
|||
|
// Initialise the piece-wise affine warps, biases and weights
|
|||
|
paws.resize(n);
|
|||
|
|
|||
|
if( validator_type == 0)
|
|||
|
{
|
|||
|
// Reading in SVRs
|
|||
|
bs.resize(n);
|
|||
|
ws.resize(n);
|
|||
|
}
|
|||
|
else if(validator_type == 1)
|
|||
|
{
|
|||
|
// Reading in NNs
|
|||
|
ws_nn.resize(n);
|
|||
|
|
|||
|
activation_fun.resize(n);
|
|||
|
output_fun.resize(n);
|
|||
|
}
|
|||
|
else if(validator_type == 2)
|
|||
|
{
|
|||
|
cnn_convolutional_layers.resize(n);
|
|||
|
cnn_convolutional_layers_dft.resize(n);
|
|||
|
cnn_subsampling_layers.resize(n);
|
|||
|
cnn_fully_connected_layers.resize(n);
|
|||
|
cnn_layer_types.resize(n);
|
|||
|
cnn_fully_connected_layers_bias.resize(n);
|
|||
|
cnn_convolutional_layers_bias.resize(n);
|
|||
|
}
|
|||
|
|
|||
|
// Initialise the normalisation terms
|
|||
|
mean_images.resize(n);
|
|||
|
standard_deviations.resize(n);
|
|||
|
|
|||
|
// Read in the validators for each of the views
|
|||
|
for(int i = 0; i < n; i++)
|
|||
|
{
|
|||
|
|
|||
|
// Read in the mean images
|
|||
|
LandmarkDetector::ReadMatBin(detection_validator_stream, mean_images[i]);
|
|||
|
mean_images[i] = mean_images[i].t();
|
|||
|
|
|||
|
LandmarkDetector::ReadMatBin(detection_validator_stream, standard_deviations[i]);
|
|||
|
standard_deviations[i] = standard_deviations[i].t();
|
|||
|
|
|||
|
// Model specifics
|
|||
|
if(validator_type == 0)
|
|||
|
{
|
|||
|
// Reading in the biases and weights
|
|||
|
detection_validator_stream.read ((char*)&bs[i], 8);
|
|||
|
LandmarkDetector::ReadMatBin(detection_validator_stream, ws[i]);
|
|||
|
|
|||
|
}
|
|||
|
else if(validator_type == 1)
|
|||
|
{
|
|||
|
|
|||
|
// Reading in the number of layers in the neural net
|
|||
|
int num_depth_layers;
|
|||
|
detection_validator_stream.read ((char*)&num_depth_layers, 4);
|
|||
|
|
|||
|
// Reading in activation and output function types
|
|||
|
detection_validator_stream.read ((char*)&activation_fun[i], 4);
|
|||
|
detection_validator_stream.read ((char*)&output_fun[i], 4);
|
|||
|
|
|||
|
ws_nn[i].resize(num_depth_layers);
|
|||
|
for(int layer = 0; layer < num_depth_layers; layer++)
|
|||
|
{
|
|||
|
LandmarkDetector::ReadMatBin(detection_validator_stream, ws_nn[i][layer]);
|
|||
|
|
|||
|
// Transpose for efficiency during multiplication
|
|||
|
ws_nn[i][layer] = ws_nn[i][layer].t();
|
|||
|
}
|
|||
|
}
|
|||
|
else if(validator_type == 2)
|
|||
|
{
|
|||
|
// Reading in CNNs
|
|||
|
|
|||
|
int network_depth;
|
|||
|
detection_validator_stream.read ((char*)&network_depth, 4);
|
|||
|
|
|||
|
cnn_layer_types[i].resize(network_depth);
|
|||
|
|
|||
|
for(int layer = 0; layer < network_depth; ++layer)
|
|||
|
{
|
|||
|
|
|||
|
int layer_type;
|
|||
|
detection_validator_stream.read ((char*)&layer_type, 4);
|
|||
|
cnn_layer_types[i][layer] = layer_type;
|
|||
|
|
|||
|
// convolutional
|
|||
|
if(layer_type == 0)
|
|||
|
{
|
|||
|
|
|||
|
// Read the number of input maps
|
|||
|
int num_in_maps;
|
|||
|
detection_validator_stream.read ((char*)&num_in_maps, 4);
|
|||
|
|
|||
|
// Read the number of kernels for each input map
|
|||
|
int num_kernels;
|
|||
|
detection_validator_stream.read ((char*)&num_kernels, 4);
|
|||
|
|
|||
|
vector<vector<cv::Mat_<float> > > kernels;
|
|||
|
vector<vector<pair<int, cv::Mat_<double> > > > kernel_dfts;
|
|||
|
|
|||
|
kernels.resize(num_in_maps);
|
|||
|
kernel_dfts.resize(num_in_maps);
|
|||
|
|
|||
|
vector<float> biases;
|
|||
|
for (int k = 0; k < num_kernels; ++k)
|
|||
|
{
|
|||
|
float bias;
|
|||
|
detection_validator_stream.read ((char*)&bias, 4);
|
|||
|
biases.push_back(bias);
|
|||
|
}
|
|||
|
|
|||
|
cnn_convolutional_layers_bias[i].push_back(biases);
|
|||
|
|
|||
|
// For every input map
|
|||
|
for (int in = 0; in < num_in_maps; ++in)
|
|||
|
{
|
|||
|
kernels[in].resize(num_kernels);
|
|||
|
kernel_dfts[in].resize(num_kernels);
|
|||
|
|
|||
|
// For every kernel on that input map
|
|||
|
for (int k = 0; k < num_kernels; ++k)
|
|||
|
{
|
|||
|
ReadMatBin(detection_validator_stream, kernels[in][k]);
|
|||
|
|
|||
|
// Flip the kernel in order to do convolution and not correlation
|
|||
|
cv::flip(kernels[in][k], kernels[in][k], -1);
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
cnn_convolutional_layers[i].push_back(kernels);
|
|||
|
cnn_convolutional_layers_dft[i].push_back(kernel_dfts);
|
|||
|
}
|
|||
|
else if(layer_type == 1)
|
|||
|
{
|
|||
|
// Subsampling layer
|
|||
|
|
|||
|
int scale;
|
|||
|
detection_validator_stream.read ((char*)&scale, 4);
|
|||
|
|
|||
|
cnn_subsampling_layers[i].push_back(scale);
|
|||
|
}
|
|||
|
else if(layer_type == 2)
|
|||
|
{
|
|||
|
float bias;
|
|||
|
detection_validator_stream.read ((char*)&bias, 4);
|
|||
|
cnn_fully_connected_layers_bias[i].push_back(bias);
|
|||
|
|
|||
|
// Fully connected layer
|
|||
|
cv::Mat_<float> weights;
|
|||
|
ReadMatBin(detection_validator_stream, weights);
|
|||
|
cnn_fully_connected_layers[i].push_back(weights);
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Read in the piece-wise affine warps
|
|||
|
paws[i].Read(detection_validator_stream);
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
cout << "WARNING: Can't find the Face checker location" << endl;
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
//===========================================================================
|
|||
|
// Check if the fitting actually succeeded
|
|||
|
double DetectionValidator::Check(const cv::Vec3d& orientation, const cv::Mat_<uchar>& intensity_img, cv::Mat_<double>& detected_landmarks)
|
|||
|
{
|
|||
|
|
|||
|
int id = GetViewId(orientation);
|
|||
|
|
|||
|
// The warped (cropped) image, corresponding to a face lying withing the detected lanmarks
|
|||
|
cv::Mat_<double> warped;
|
|||
|
|
|||
|
// the piece-wise affine image
|
|||
|
cv::Mat_<double> intensity_img_double;
|
|||
|
intensity_img.convertTo(intensity_img_double, CV_64F);
|
|||
|
|
|||
|
paws[id].Warp(intensity_img_double, warped, detected_landmarks);
|
|||
|
|
|||
|
double dec;
|
|||
|
if(validator_type == 0)
|
|||
|
{
|
|||
|
dec = CheckSVR(warped, id);
|
|||
|
}
|
|||
|
else if(validator_type == 1)
|
|||
|
{
|
|||
|
dec = CheckNN(warped, id);
|
|||
|
}
|
|||
|
else if(validator_type == 2)
|
|||
|
{
|
|||
|
dec = CheckCNN(warped, id);
|
|||
|
}
|
|||
|
return dec;
|
|||
|
}
|
|||
|
|
|||
|
double DetectionValidator::CheckNN(const cv::Mat_<double>& warped_img, int view_id)
|
|||
|
{
|
|||
|
cv::Mat_<double> feature_vec;
|
|||
|
NormaliseWarpedToVector(warped_img, feature_vec, view_id);
|
|||
|
feature_vec = feature_vec.t();
|
|||
|
|
|||
|
for(size_t layer = 0; layer < ws_nn[view_id].size(); ++layer)
|
|||
|
{
|
|||
|
// Add a bias term
|
|||
|
cv::hconcat(cv::Mat_<double>(1,1, 1.0), feature_vec, feature_vec);
|
|||
|
|
|||
|
// Apply the weights
|
|||
|
feature_vec = feature_vec * ws_nn[view_id][layer];
|
|||
|
|
|||
|
// Activation or output
|
|||
|
int fun_type;
|
|||
|
if(layer != ws_nn[view_id].size() - 1)
|
|||
|
{
|
|||
|
fun_type = activation_fun[view_id];
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
fun_type = output_fun[view_id];
|
|||
|
}
|
|||
|
|
|||
|
if(fun_type == 0)
|
|||
|
{
|
|||
|
cv::exp(-feature_vec, feature_vec);
|
|||
|
feature_vec = 1.0 /(1.0 + feature_vec);
|
|||
|
}
|
|||
|
else if(fun_type == 1)
|
|||
|
{
|
|||
|
cv::MatIterator_<double> q1 = feature_vec.begin(); // respone for each pixel
|
|||
|
cv::MatIterator_<double> q2 = feature_vec.end();
|
|||
|
|
|||
|
// the logistic function (sigmoid) applied to the response
|
|||
|
while(q1 != q2)
|
|||
|
{
|
|||
|
*q1 = 1.7159 * tanh((2.0/3.0) * (*q1));
|
|||
|
q1++;
|
|||
|
}
|
|||
|
}
|
|||
|
// TODO ReLU
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
// Turn it to -1, 1 range
|
|||
|
double dec = (feature_vec.at<double>(0) - 0.5) * 2;
|
|||
|
|
|||
|
return dec;
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
double DetectionValidator::CheckSVR(const cv::Mat_<double>& warped_img, int view_id)
|
|||
|
{
|
|||
|
|
|||
|
cv::Mat_<double> feature_vec;
|
|||
|
NormaliseWarpedToVector(warped_img, feature_vec, view_id);
|
|||
|
|
|||
|
|
|||
|
double dec = (ws[view_id].dot(feature_vec.t()) + bs[view_id]);
|
|||
|
|
|||
|
return dec;
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
// Convolutional Neural Network
|
|||
|
double DetectionValidator::CheckCNN(const cv::Mat_<double>& warped_img, int view_id)
|
|||
|
{
|
|||
|
|
|||
|
cv::Mat_<double> feature_vec;
|
|||
|
NormaliseWarpedToVector(warped_img, feature_vec, view_id);
|
|||
|
|
|||
|
// Create a normalised image from the crop vector
|
|||
|
cv::Mat_<float> img(warped_img.size(), 0.0);
|
|||
|
img = img.t();
|
|||
|
|
|||
|
cv::Mat mask = paws[view_id].pixel_mask.t();
|
|||
|
cv::MatIterator_<uchar> mask_it = mask.begin<uchar>();
|
|||
|
|
|||
|
cv::MatIterator_<double> feature_it = feature_vec.begin();
|
|||
|
cv::MatIterator_<float> img_it = img.begin();
|
|||
|
|
|||
|
int wInt = img.cols;
|
|||
|
int hInt = img.rows;
|
|||
|
|
|||
|
for(int i=0; i < wInt; ++i)
|
|||
|
{
|
|||
|
for(int j=0; j < hInt; ++j, ++mask_it, ++img_it)
|
|||
|
{
|
|||
|
// if is within mask
|
|||
|
if(*mask_it)
|
|||
|
{
|
|||
|
// assign the feature to image if it is within the mask
|
|||
|
*img_it = (float)*feature_it++;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
img = img.t();
|
|||
|
|
|||
|
int cnn_layer = 0;
|
|||
|
int subsample_layer = 0;
|
|||
|
int fully_connected_layer = 0;
|
|||
|
|
|||
|
vector<cv::Mat_<float> > input_maps;
|
|||
|
input_maps.push_back(img);
|
|||
|
|
|||
|
vector<cv::Mat_<float> > outputs;
|
|||
|
|
|||
|
for(size_t layer = 0; layer < cnn_layer_types[view_id].size(); ++layer)
|
|||
|
{
|
|||
|
// Determine layer type
|
|||
|
int layer_type = cnn_layer_types[view_id][layer];
|
|||
|
|
|||
|
|
|||
|
// Convolutional layer
|
|||
|
if(layer_type == 0)
|
|||
|
{
|
|||
|
vector<cv::Mat_<float> > outputs_kern;
|
|||
|
for(size_t in = 0; in < input_maps.size(); ++in)
|
|||
|
{
|
|||
|
cv::Mat_<float> input_image = input_maps[in];
|
|||
|
|
|||
|
// Useful precomputed data placeholders for quick correlation (convolution)
|
|||
|
cv::Mat_<double> input_image_dft;
|
|||
|
cv::Mat integral_image;
|
|||
|
cv::Mat integral_image_sq;
|
|||
|
|
|||
|
for(size_t k = 0; k < cnn_convolutional_layers[view_id][cnn_layer][in].size(); ++k)
|
|||
|
{
|
|||
|
cv::Mat_<float> kernel = cnn_convolutional_layers[view_id][cnn_layer][in][k];
|
|||
|
|
|||
|
// The convolution (with precomputation)
|
|||
|
cv::Mat_<float> output;
|
|||
|
if(cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second.empty())
|
|||
|
{
|
|||
|
std::map<int, cv::Mat_<double> > precomputed_dft;
|
|||
|
|
|||
|
LandmarkDetector::matchTemplate_m(input_image, input_image_dft, integral_image, integral_image_sq, kernel, precomputed_dft, output, CV_TM_CCORR);
|
|||
|
|
|||
|
cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].first = precomputed_dft.begin()->first;
|
|||
|
cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second = precomputed_dft.begin()->second;
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
std::map<int, cv::Mat_<double> > precomputed_dft;
|
|||
|
precomputed_dft[cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].first] = cnn_convolutional_layers_dft[view_id][cnn_layer][in][k].second;
|
|||
|
LandmarkDetector::matchTemplate_m(input_image, input_image_dft, integral_image, integral_image_sq, kernel, precomputed_dft, output, CV_TM_CCORR);
|
|||
|
}
|
|||
|
|
|||
|
// Combining the maps
|
|||
|
if(in == 0)
|
|||
|
{
|
|||
|
outputs_kern.push_back(output);
|
|||
|
}
|
|||
|
else
|
|||
|
{
|
|||
|
outputs_kern[k] = outputs_kern[k] + output;
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
outputs.clear();
|
|||
|
for(size_t k = 0; k < cnn_convolutional_layers[view_id][cnn_layer][0].size(); ++k)
|
|||
|
{
|
|||
|
// Apply the sigmoid
|
|||
|
cv::exp(-outputs_kern[k] - cnn_convolutional_layers_bias[view_id][cnn_layer][k], outputs_kern[k]);
|
|||
|
outputs_kern[k] = 1.0 /(1.0 + outputs_kern[k]);
|
|||
|
|
|||
|
outputs.push_back(outputs_kern[k]);
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
cnn_layer++;
|
|||
|
}
|
|||
|
if(layer_type == 1)
|
|||
|
{
|
|||
|
// Subsampling layer
|
|||
|
int scale = cnn_subsampling_layers[view_id][subsample_layer];
|
|||
|
|
|||
|
cv::Mat kx = cv::Mat::ones(2, 1, CV_32F)*1.0f/scale;
|
|||
|
cv::Mat ky = cv::Mat::ones(1, 2, CV_32F)*1.0f/scale;
|
|||
|
|
|||
|
vector<cv::Mat_<float>> outputs_sub;
|
|||
|
for(size_t in = 0; in < input_maps.size(); ++in)
|
|||
|
{
|
|||
|
|
|||
|
cv::Mat_<float> conv_out;
|
|||
|
|
|||
|
cv::sepFilter2D(input_maps[in], conv_out, CV_32F, kx, ky);
|
|||
|
conv_out = conv_out(cv::Rect(1, 1, conv_out.cols - 1, conv_out.rows - 1));
|
|||
|
|
|||
|
int res_rows = conv_out.rows / scale;
|
|||
|
int res_cols = conv_out.cols / scale;
|
|||
|
|
|||
|
if(conv_out.rows % scale != 0)
|
|||
|
{
|
|||
|
res_rows++;
|
|||
|
}
|
|||
|
if(conv_out.cols % scale != 0)
|
|||
|
{
|
|||
|
res_cols++;
|
|||
|
}
|
|||
|
|
|||
|
cv::Mat_<float> sub_out(res_rows, res_cols);
|
|||
|
for(int w = 0; w < conv_out.cols; w+=scale)
|
|||
|
{
|
|||
|
for(int h=0; h < conv_out.rows; h+=scale)
|
|||
|
{
|
|||
|
sub_out.at<float>(h/scale, w/scale) = conv_out(h, w);
|
|||
|
}
|
|||
|
}
|
|||
|
outputs_sub.push_back(sub_out);
|
|||
|
}
|
|||
|
outputs = outputs_sub;
|
|||
|
subsample_layer++;
|
|||
|
|
|||
|
}
|
|||
|
if(layer_type == 2)
|
|||
|
{
|
|||
|
// Concatenate all the maps
|
|||
|
cv::Mat_<float> input_concat = input_maps[0].t();
|
|||
|
input_concat = input_concat.reshape(0, 1);
|
|||
|
|
|||
|
for(size_t in = 1; in < input_maps.size(); ++in)
|
|||
|
{
|
|||
|
cv::Mat_<float> add = input_maps[in].t();
|
|||
|
add = add.reshape(0,1);
|
|||
|
cv::hconcat(input_concat, add, input_concat);
|
|||
|
}
|
|||
|
|
|||
|
input_concat = input_concat * cnn_fully_connected_layers[view_id][fully_connected_layer].t();
|
|||
|
|
|||
|
cv::exp(-input_concat - cnn_fully_connected_layers_bias[view_id][fully_connected_layer], input_concat);
|
|||
|
input_concat = 1.0 /(1.0 + input_concat);
|
|||
|
|
|||
|
outputs.clear();
|
|||
|
outputs.push_back(input_concat);
|
|||
|
|
|||
|
fully_connected_layer++;
|
|||
|
}
|
|||
|
// Set the outputs of this layer to inputs of the next
|
|||
|
input_maps = outputs;
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
// Turn it to -1, 1 range
|
|||
|
double dec = (outputs[0].at<float>(0) - 0.5) * 2.0;
|
|||
|
|
|||
|
return dec;
|
|||
|
}
|
|||
|
|
|||
|
void DetectionValidator::NormaliseWarpedToVector(const cv::Mat_<double>& warped_img, cv::Mat_<double>& feature_vec, int view_id)
|
|||
|
{
|
|||
|
cv::Mat_<double> warped_t = warped_img.t();
|
|||
|
|
|||
|
// the vector to be filled with paw values
|
|||
|
cv::MatIterator_<double> vp;
|
|||
|
cv::MatIterator_<double> cp;
|
|||
|
|
|||
|
cv::Mat_<double> vec(paws[view_id].number_of_pixels,1);
|
|||
|
vp = vec.begin();
|
|||
|
|
|||
|
cp = warped_t.begin();
|
|||
|
|
|||
|
int wInt = warped_img.cols;
|
|||
|
int hInt = warped_img.rows;
|
|||
|
|
|||
|
// the mask indicating if point is within or outside the face region
|
|||
|
|
|||
|
cv::Mat maskT = paws[view_id].pixel_mask.t();
|
|||
|
|
|||
|
cv::MatIterator_<uchar> mp = maskT.begin<uchar>();
|
|||
|
|
|||
|
for(int i=0; i < wInt; ++i)
|
|||
|
{
|
|||
|
for(int j=0; j < hInt; ++j, ++mp, ++cp)
|
|||
|
{
|
|||
|
// if is within mask
|
|||
|
if(*mp)
|
|||
|
{
|
|||
|
*vp++ = *cp;
|
|||
|
}
|
|||
|
}
|
|||
|
}
|
|||
|
|
|||
|
// Local normalisation
|
|||
|
cv::Scalar mean;
|
|||
|
cv::Scalar std;
|
|||
|
cv::meanStdDev(vec, mean, std);
|
|||
|
|
|||
|
// subtract the mean image
|
|||
|
vec -= mean[0];
|
|||
|
|
|||
|
// Normalise the image
|
|||
|
if(std[0] == 0)
|
|||
|
{
|
|||
|
std[0] = 1;
|
|||
|
}
|
|||
|
|
|||
|
vec /= std[0];
|
|||
|
|
|||
|
// Global normalisation
|
|||
|
feature_vec = (vec - mean_images[view_id]) / standard_deviations[view_id];
|
|||
|
}
|
|||
|
|
|||
|
// Getting the closest view center based on orientation
|
|||
|
int DetectionValidator::GetViewId(const cv::Vec3d& orientation) const
|
|||
|
{
|
|||
|
int id = 0;
|
|||
|
|
|||
|
double dbest = -1.0;
|
|||
|
|
|||
|
for(size_t i = 0; i < this->orientations.size(); i++)
|
|||
|
{
|
|||
|
|
|||
|
// Distance to current view
|
|||
|
double d = cv::norm(orientation, this->orientations[i]);
|
|||
|
|
|||
|
if(i == 0 || d < dbest)
|
|||
|
{
|
|||
|
dbest = d;
|
|||
|
id = i;
|
|||
|
}
|
|||
|
}
|
|||
|
return id;
|
|||
|
|
|||
|
}
|
|||
|
|
|||
|
|