sustaining_gazes/lib/local/LandmarkDetector/include/LandmarkDetectorParameters.h

143 lines
6.1 KiB
C
Raw Normal View History

2016-04-28 19:40:36 +00:00
///////////////////////////////////////////////////////////////////////////////
// Copyright (C) 2016, Carnegie Mellon University and University of Cambridge,
// all rights reserved.
//
// THIS SOFTWARE IS PROVIDED <20>AS IS<49> FOR ACADEMIC USE ONLY AND ANY EXPRESS
// OR IMPLIED WARRANTIES WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
// THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS
// BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY.
// OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
// SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
// ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE.
//
// Notwithstanding the license granted herein, Licensee acknowledges that certain components
// of the Software may be covered by so-called <20>open source<63> software licenses (<28>Open Source
// Components<74>), which means any software licenses approved as open source licenses by the
// Open Source Initiative or any substantially similar licenses, including without limitation any
// license that, as a condition of distribution of the software licensed under such license,
// requires that the distributor make the software available in source code format. Licensor shall
// provide a list of Open Source Components for a particular version of the Software upon
// Licensee<65>s request. Licensee will comply with the applicable terms of such licenses and to
// the extent required by the licenses covering Open Source Components, the terms of such
// licenses will apply in lieu of the terms of this Agreement. To the extent the terms of the
// licenses applicable to Open Source Components prohibit any of the restrictions in this
// License Agreement with respect to such Open Source Component, such restrictions will not
// apply to such Open Source Component. To the extent the terms of the licenses applicable to
// Open Source Components require Licensor to make an offer to provide source code or
// related information in connection with the Software, such offer is hereby made. Any request
// for source code or related information should be directed to cl-face-tracker-distribution@lists.cam.ac.uk
// Licensee acknowledges receipt of notices for the Open Source Components for the initial
// delivery of the Software.
// * Any publications arising from the use of this software, including but
// not limited to academic journal and conference publications, technical
// reports and manuals, must cite at least one of the following works:
//
// OpenFace: an open source facial behavior analysis toolkit
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency
// in IEEE Winter Conference on Applications of Computer Vision, 2016
//
// Rendering of Eyes for Eye-Shape Registration and Gaze Estimation
// Erroll Wood, Tadas Baltru<72>aitis, Xucong Zhang, Yusuke Sugano, Peter Robinson, and Andreas Bulling
// in IEEE International. Conference on Computer Vision (ICCV), 2015
//
// Cross-dataset learning and person-speci?c normalisation for automatic Action Unit detection
// Tadas Baltru<72>aitis, Marwa Mahmoud, and Peter Robinson
// in Facial Expression Recognition and Analysis Challenge,
// IEEE International Conference on Automatic Face and Gesture Recognition, 2015
//
// Constrained Local Neural Fields for robust facial landmark detection in the wild.
// Tadas Baltru<72>aitis, Peter Robinson, and Louis-Philippe Morency.
// in IEEE Int. Conference on Computer Vision Workshops, 300 Faces in-the-Wild Challenge, 2013.
//
///////////////////////////////////////////////////////////////////////////////
// Parameters of the CLNF, CLM-Z and CLM trackers
#ifndef __LANDMARK_DETECTOR_PARAM_H
#define __LANDMARK_DETECTOR_PARAM_H
#include <vector>
using namespace std;
namespace LandmarkDetector
{
struct FaceModelParameters
{
// A number of RLMS or NU-RLMS iterations
int num_optimisation_iteration;
// Should pose be limited to 180 degrees frontal
bool limit_pose;
// Should face validation be done
bool validate_detections;
// Landmark detection validator boundary for correct detection, the regressor output -1 (perfect alignment) 1 (bad alignment),
double validation_boundary;
// Used when tracking is going well
vector<int> window_sizes_small;
// Used when initialising or tracking fails
vector<int> window_sizes_init;
// Used for the current frame
vector<int> window_sizes_current;
// How big is the tracking template that helps with large motions
double face_template_scale;
bool use_face_template;
// Where to load the model from
string model_location;
// this is used for the smooting of response maps (KDE sigma)
double sigma;
double reg_factor; // weight put to regularisation
double weight_factor; // factor for weighted least squares
// should multiple views be considered during reinit
bool multi_view;
// How often should face detection be used to attempt reinitialisation, every n frames (set to negative not to reinit)
int reinit_video_every;
// Determining which face detector to use for (re)initialisation, HAAR is quicker but provides more false positives and is not goot for in-the-wild conditions
// Also HAAR detector can detect smaller faces while HOG SVM is only capable of detecting faces at least 70px across
enum FaceDetector{HAAR_DETECTOR, HOG_SVM_DETECTOR};
string face_detector_location;
FaceDetector curr_face_detector;
// Should the results be visualised and reported to console
bool quiet_mode;
// Should the model be refined hierarchically (if available)
bool refine_hierarchical;
// Should the parameters be refined for different scales
bool refine_parameters;
// Using the brand new and experimental gaze tracker
bool track_gaze;
FaceModelParameters();
FaceModelParameters(vector<string> &arguments);
private:
void init();
};
}
#endif // __LANDMARK_DETECTOR_PARAM_H