583f2bdd13
BOMs barf on UTF-8 decoding within PyTorch: File "D:\Soft\Miniconda3\lib\site-packages\torch\utils_cpp_extension_versioner.py", line 16, in hash_source_files hash_value = update_hash(hash_value, file.read()) UnicodeDecodeError: 'gbk' codec can't decode byte 0xbf in position 2: illegal multibyte sequence Should fix #10, #14
279 lines
12 KiB
Python
279 lines
12 KiB
Python
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
# and proprietary rights in and to this software, related documentation
|
|
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
# distribution of this software and related documentation without an express
|
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
|
|
"""Miscellaneous utilities used internally by the quality metrics."""
|
|
|
|
import os
|
|
import time
|
|
import hashlib
|
|
import pickle
|
|
import copy
|
|
import uuid
|
|
import numpy as np
|
|
import torch
|
|
import dnnlib
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
class MetricOptions:
|
|
def __init__(self, G=None, G_kwargs={}, dataset_kwargs={}, num_gpus=1, rank=0, device=None, progress=None, cache=True):
|
|
assert 0 <= rank < num_gpus
|
|
self.G = G
|
|
self.G_kwargs = dnnlib.EasyDict(G_kwargs)
|
|
self.dataset_kwargs = dnnlib.EasyDict(dataset_kwargs)
|
|
self.num_gpus = num_gpus
|
|
self.rank = rank
|
|
self.device = device if device is not None else torch.device('cuda', rank)
|
|
self.progress = progress.sub() if progress is not None and rank == 0 else ProgressMonitor()
|
|
self.cache = cache
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
_feature_detector_cache = dict()
|
|
|
|
def get_feature_detector_name(url):
|
|
return os.path.splitext(url.split('/')[-1])[0]
|
|
|
|
def get_feature_detector(url, device=torch.device('cpu'), num_gpus=1, rank=0, verbose=False):
|
|
assert 0 <= rank < num_gpus
|
|
key = (url, device)
|
|
if key not in _feature_detector_cache:
|
|
is_leader = (rank == 0)
|
|
if not is_leader and num_gpus > 1:
|
|
torch.distributed.barrier() # leader goes first
|
|
with dnnlib.util.open_url(url, verbose=(verbose and is_leader)) as f:
|
|
_feature_detector_cache[key] = pickle.load(f).to(device)
|
|
if is_leader and num_gpus > 1:
|
|
torch.distributed.barrier() # others follow
|
|
return _feature_detector_cache[key]
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
def iterate_random_labels(opts, batch_size):
|
|
if opts.G.c_dim == 0:
|
|
c = torch.zeros([batch_size, opts.G.c_dim], device=opts.device)
|
|
while True:
|
|
yield c
|
|
else:
|
|
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs)
|
|
while True:
|
|
c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(batch_size)]
|
|
c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device)
|
|
yield c
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
class FeatureStats:
|
|
def __init__(self, capture_all=False, capture_mean_cov=False, max_items=None):
|
|
self.capture_all = capture_all
|
|
self.capture_mean_cov = capture_mean_cov
|
|
self.max_items = max_items
|
|
self.num_items = 0
|
|
self.num_features = None
|
|
self.all_features = None
|
|
self.raw_mean = None
|
|
self.raw_cov = None
|
|
|
|
def set_num_features(self, num_features):
|
|
if self.num_features is not None:
|
|
assert num_features == self.num_features
|
|
else:
|
|
self.num_features = num_features
|
|
self.all_features = []
|
|
self.raw_mean = np.zeros([num_features], dtype=np.float64)
|
|
self.raw_cov = np.zeros([num_features, num_features], dtype=np.float64)
|
|
|
|
def is_full(self):
|
|
return (self.max_items is not None) and (self.num_items >= self.max_items)
|
|
|
|
def append(self, x):
|
|
x = np.asarray(x, dtype=np.float32)
|
|
assert x.ndim == 2
|
|
if (self.max_items is not None) and (self.num_items + x.shape[0] > self.max_items):
|
|
if self.num_items >= self.max_items:
|
|
return
|
|
x = x[:self.max_items - self.num_items]
|
|
|
|
self.set_num_features(x.shape[1])
|
|
self.num_items += x.shape[0]
|
|
if self.capture_all:
|
|
self.all_features.append(x)
|
|
if self.capture_mean_cov:
|
|
x64 = x.astype(np.float64)
|
|
self.raw_mean += x64.sum(axis=0)
|
|
self.raw_cov += x64.T @ x64
|
|
|
|
def append_torch(self, x, num_gpus=1, rank=0):
|
|
assert isinstance(x, torch.Tensor) and x.ndim == 2
|
|
assert 0 <= rank < num_gpus
|
|
if num_gpus > 1:
|
|
ys = []
|
|
for src in range(num_gpus):
|
|
y = x.clone()
|
|
torch.distributed.broadcast(y, src=src)
|
|
ys.append(y)
|
|
x = torch.stack(ys, dim=1).flatten(0, 1) # interleave samples
|
|
self.append(x.cpu().numpy())
|
|
|
|
def get_all(self):
|
|
assert self.capture_all
|
|
return np.concatenate(self.all_features, axis=0)
|
|
|
|
def get_all_torch(self):
|
|
return torch.from_numpy(self.get_all())
|
|
|
|
def get_mean_cov(self):
|
|
assert self.capture_mean_cov
|
|
mean = self.raw_mean / self.num_items
|
|
cov = self.raw_cov / self.num_items
|
|
cov = cov - np.outer(mean, mean)
|
|
return mean, cov
|
|
|
|
def save(self, pkl_file):
|
|
with open(pkl_file, 'wb') as f:
|
|
pickle.dump(self.__dict__, f)
|
|
|
|
@staticmethod
|
|
def load(pkl_file):
|
|
with open(pkl_file, 'rb') as f:
|
|
s = dnnlib.EasyDict(pickle.load(f))
|
|
obj = FeatureStats(capture_all=s.capture_all, max_items=s.max_items)
|
|
obj.__dict__.update(s)
|
|
return obj
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
class ProgressMonitor:
|
|
def __init__(self, tag=None, num_items=None, flush_interval=1000, verbose=False, progress_fn=None, pfn_lo=0, pfn_hi=1000, pfn_total=1000):
|
|
self.tag = tag
|
|
self.num_items = num_items
|
|
self.verbose = verbose
|
|
self.flush_interval = flush_interval
|
|
self.progress_fn = progress_fn
|
|
self.pfn_lo = pfn_lo
|
|
self.pfn_hi = pfn_hi
|
|
self.pfn_total = pfn_total
|
|
self.start_time = time.time()
|
|
self.batch_time = self.start_time
|
|
self.batch_items = 0
|
|
if self.progress_fn is not None:
|
|
self.progress_fn(self.pfn_lo, self.pfn_total)
|
|
|
|
def update(self, cur_items):
|
|
assert (self.num_items is None) or (cur_items <= self.num_items)
|
|
if (cur_items < self.batch_items + self.flush_interval) and (self.num_items is None or cur_items < self.num_items):
|
|
return
|
|
cur_time = time.time()
|
|
total_time = cur_time - self.start_time
|
|
time_per_item = (cur_time - self.batch_time) / max(cur_items - self.batch_items, 1)
|
|
if (self.verbose) and (self.tag is not None):
|
|
print(f'{self.tag:<19s} items {cur_items:<7d} time {dnnlib.util.format_time(total_time):<12s} ms/item {time_per_item*1e3:.2f}')
|
|
self.batch_time = cur_time
|
|
self.batch_items = cur_items
|
|
|
|
if (self.progress_fn is not None) and (self.num_items is not None):
|
|
self.progress_fn(self.pfn_lo + (self.pfn_hi - self.pfn_lo) * (cur_items / self.num_items), self.pfn_total)
|
|
|
|
def sub(self, tag=None, num_items=None, flush_interval=1000, rel_lo=0, rel_hi=1):
|
|
return ProgressMonitor(
|
|
tag = tag,
|
|
num_items = num_items,
|
|
flush_interval = flush_interval,
|
|
verbose = self.verbose,
|
|
progress_fn = self.progress_fn,
|
|
pfn_lo = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_lo,
|
|
pfn_hi = self.pfn_lo + (self.pfn_hi - self.pfn_lo) * rel_hi,
|
|
pfn_total = self.pfn_total,
|
|
)
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
def compute_feature_stats_for_dataset(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, data_loader_kwargs=None, max_items=None, **stats_kwargs):
|
|
dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs)
|
|
if data_loader_kwargs is None:
|
|
data_loader_kwargs = dict(pin_memory=True, num_workers=3, prefetch_factor=2)
|
|
|
|
# Try to lookup from cache.
|
|
cache_file = None
|
|
if opts.cache:
|
|
# Choose cache file name.
|
|
args = dict(dataset_kwargs=opts.dataset_kwargs, detector_url=detector_url, detector_kwargs=detector_kwargs, stats_kwargs=stats_kwargs)
|
|
md5 = hashlib.md5(repr(sorted(args.items())).encode('utf-8'))
|
|
cache_tag = f'{dataset.name}-{get_feature_detector_name(detector_url)}-{md5.hexdigest()}'
|
|
cache_file = dnnlib.make_cache_dir_path('gan-metrics', cache_tag + '.pkl')
|
|
|
|
# Check if the file exists (all processes must agree).
|
|
flag = os.path.isfile(cache_file) if opts.rank == 0 else False
|
|
if opts.num_gpus > 1:
|
|
flag = torch.as_tensor(flag, dtype=torch.float32, device=opts.device)
|
|
torch.distributed.broadcast(tensor=flag, src=0)
|
|
flag = (float(flag.cpu()) != 0)
|
|
|
|
# Load.
|
|
if flag:
|
|
return FeatureStats.load(cache_file)
|
|
|
|
# Initialize.
|
|
num_items = len(dataset)
|
|
if max_items is not None:
|
|
num_items = min(num_items, max_items)
|
|
stats = FeatureStats(max_items=num_items, **stats_kwargs)
|
|
progress = opts.progress.sub(tag='dataset features', num_items=num_items, rel_lo=rel_lo, rel_hi=rel_hi)
|
|
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose)
|
|
|
|
# Main loop.
|
|
item_subset = [(i * opts.num_gpus + opts.rank) % num_items for i in range((num_items - 1) // opts.num_gpus + 1)]
|
|
for images, _labels in torch.utils.data.DataLoader(dataset=dataset, sampler=item_subset, batch_size=batch_size, **data_loader_kwargs):
|
|
if images.shape[1] == 1:
|
|
images = images.repeat([1, 3, 1, 1])
|
|
features = detector(images.to(opts.device), **detector_kwargs)
|
|
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank)
|
|
progress.update(stats.num_items)
|
|
|
|
# Save to cache.
|
|
if cache_file is not None and opts.rank == 0:
|
|
os.makedirs(os.path.dirname(cache_file), exist_ok=True)
|
|
temp_file = cache_file + '.' + uuid.uuid4().hex
|
|
stats.save(temp_file)
|
|
os.replace(temp_file, cache_file) # atomic
|
|
return stats
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
def compute_feature_stats_for_generator(opts, detector_url, detector_kwargs, rel_lo=0, rel_hi=1, batch_size=64, batch_gen=None, **stats_kwargs):
|
|
if batch_gen is None:
|
|
batch_gen = min(batch_size, 4)
|
|
assert batch_size % batch_gen == 0
|
|
|
|
# Setup generator and labels.
|
|
G = copy.deepcopy(opts.G).eval().requires_grad_(False).to(opts.device)
|
|
c_iter = iterate_random_labels(opts=opts, batch_size=batch_gen)
|
|
|
|
# Initialize.
|
|
stats = FeatureStats(**stats_kwargs)
|
|
assert stats.max_items is not None
|
|
progress = opts.progress.sub(tag='generator features', num_items=stats.max_items, rel_lo=rel_lo, rel_hi=rel_hi)
|
|
detector = get_feature_detector(url=detector_url, device=opts.device, num_gpus=opts.num_gpus, rank=opts.rank, verbose=progress.verbose)
|
|
|
|
# Main loop.
|
|
while not stats.is_full():
|
|
images = []
|
|
for _i in range(batch_size // batch_gen):
|
|
z = torch.randn([batch_gen, G.z_dim], device=opts.device)
|
|
img = G(z=z, c=next(c_iter), **opts.G_kwargs)
|
|
img = (img * 127.5 + 128).clamp(0, 255).to(torch.uint8)
|
|
images.append(img)
|
|
images = torch.cat(images)
|
|
if images.shape[1] == 1:
|
|
images = images.repeat([1, 3, 1, 1])
|
|
features = detector(images, **detector_kwargs)
|
|
stats.append_torch(features, num_gpus=opts.num_gpus, rank=opts.rank)
|
|
progress.update(stats.num_items)
|
|
return stats
|
|
|
|
#----------------------------------------------------------------------------
|