583f2bdd13
BOMs barf on UTF-8 decoding within PyTorch: File "D:\Soft\Miniconda3\lib\site-packages\torch\utils_cpp_extension_versioner.py", line 16, in hash_source_files hash_value = update_hash(hash_value, file.read()) UnicodeDecodeError: 'gbk' codec can't decode byte 0xbf in position 2: illegal multibyte sequence Should fix #10, #14
77 lines
2.9 KiB
Python
77 lines
2.9 KiB
Python
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
# and proprietary rights in and to this software, related documentation
|
|
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
# distribution of this software and related documentation without an express
|
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
|
|
"""Custom replacement for `torch.nn.functional.grid_sample` that
|
|
supports arbitrarily high order gradients between the input and output.
|
|
Only works on 2D images and assumes
|
|
`mode='bilinear'`, `padding_mode='zeros'`, `align_corners=False`."""
|
|
|
|
import torch
|
|
|
|
# pylint: disable=redefined-builtin
|
|
# pylint: disable=arguments-differ
|
|
# pylint: disable=protected-access
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
enabled = False # Enable the custom op by setting this to true.
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
def grid_sample(input, grid):
|
|
if _should_use_custom_op():
|
|
return _GridSample2dForward.apply(input, grid)
|
|
return torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=False)
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
def _should_use_custom_op():
|
|
return enabled
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
class _GridSample2dForward(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, input, grid):
|
|
assert input.ndim == 4
|
|
assert grid.ndim == 4
|
|
output = torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=False)
|
|
ctx.save_for_backward(input, grid)
|
|
return output
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
input, grid = ctx.saved_tensors
|
|
grad_input, grad_grid = _GridSample2dBackward.apply(grad_output, input, grid)
|
|
return grad_input, grad_grid
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
class _GridSample2dBackward(torch.autograd.Function):
|
|
@staticmethod
|
|
def forward(ctx, grad_output, input, grid):
|
|
op = torch._C._jit_get_operation('aten::grid_sampler_2d_backward')
|
|
grad_input, grad_grid = op(grad_output, input, grid, 0, 0, False)
|
|
ctx.save_for_backward(grid)
|
|
return grad_input, grad_grid
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad2_grad_input, grad2_grad_grid):
|
|
_ = grad2_grad_grid # unused
|
|
grid, = ctx.saved_tensors
|
|
grad2_grad_output = None
|
|
grad2_input = None
|
|
grad2_grid = None
|
|
|
|
if ctx.needs_input_grad[0]:
|
|
grad2_grad_output = _GridSample2dForward.apply(grad2_grad_input, grid)
|
|
|
|
assert not ctx.needs_input_grad[2]
|
|
return grad2_grad_output, grad2_input, grad2_grid
|
|
|
|
#----------------------------------------------------------------------------
|