stylegan3/torch_utils/ops/filtered_lrelu.py

275 lines
13 KiB
Python

# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto. Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.
import os
import numpy as np
import torch
import warnings
from .. import custom_ops
from .. import misc
from . import upfirdn2d
from . import bias_act
#----------------------------------------------------------------------------
_plugin = None
def _init():
global _plugin
if _plugin is None:
_plugin = custom_ops.get_plugin(
module_name='filtered_lrelu_plugin',
sources=['filtered_lrelu.cpp', 'filtered_lrelu_wr.cu', 'filtered_lrelu_rd.cu', 'filtered_lrelu_ns.cu'],
headers=['filtered_lrelu.h', 'filtered_lrelu.cu'],
source_dir=os.path.dirname(__file__),
extra_cuda_cflags=['--use_fast_math'],
)
return True
def _get_filter_size(f):
if f is None:
return 1, 1
assert isinstance(f, torch.Tensor)
assert 1 <= f.ndim <= 2
return f.shape[-1], f.shape[0] # width, height
def _parse_padding(padding):
if isinstance(padding, int):
padding = [padding, padding]
assert isinstance(padding, (list, tuple))
assert all(isinstance(x, (int, np.integer)) for x in padding)
padding = [int(x) for x in padding]
if len(padding) == 2:
px, py = padding
padding = [px, px, py, py]
px0, px1, py0, py1 = padding
return px0, px1, py0, py1
#----------------------------------------------------------------------------
def filtered_lrelu(x, fu=None, fd=None, b=None, up=1, down=1, padding=0, gain=np.sqrt(2), slope=0.2, clamp=None, flip_filter=False, impl='cuda'):
r"""Filtered leaky ReLU for a batch of 2D images.
Performs the following sequence of operations for each channel:
1. Add channel-specific bias if provided (`b`).
2. Upsample the image by inserting N-1 zeros after each pixel (`up`).
3. Pad the image with the specified number of zeros on each side (`padding`).
Negative padding corresponds to cropping the image.
4. Convolve the image with the specified upsampling FIR filter (`fu`), shrinking it
so that the footprint of all output pixels lies within the input image.
5. Multiply each value by the provided gain factor (`gain`).
6. Apply leaky ReLU activation function to each value.
7. Clamp each value between -clamp and +clamp, if `clamp` parameter is provided.
8. Convolve the image with the specified downsampling FIR filter (`fd`), shrinking
it so that the footprint of all output pixels lies within the input image.
9. Downsample the image by keeping every Nth pixel (`down`).
The fused op is considerably more efficient than performing the same calculation
using standard PyTorch ops. It supports gradients of arbitrary order.
Args:
x: Float32/float16/float64 input tensor of the shape
`[batch_size, num_channels, in_height, in_width]`.
fu: Float32 upsampling FIR filter of the shape
`[filter_height, filter_width]` (non-separable),
`[filter_taps]` (separable), or
`None` (identity).
fd: Float32 downsampling FIR filter of the shape
`[filter_height, filter_width]` (non-separable),
`[filter_taps]` (separable), or
`None` (identity).
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
as `x`. The length of vector must must match the channel dimension of `x`.
up: Integer upsampling factor (default: 1).
down: Integer downsampling factor. (default: 1).
padding: Padding with respect to the upsampled image. Can be a single number
or a list/tuple `[x, y]` or `[x_before, x_after, y_before, y_after]`
(default: 0).
gain: Overall scaling factor for signal magnitude (default: sqrt(2)).
slope: Slope on the negative side of leaky ReLU (default: 0.2).
clamp: Maximum magnitude for leaky ReLU output (default: None).
flip_filter: False = convolution, True = correlation (default: False).
impl: Implementation to use. Can be `'ref'` or `'cuda'` (default: `'cuda'`).
Returns:
Tensor of the shape `[batch_size, num_channels, out_height, out_width]`.
"""
assert isinstance(x, torch.Tensor)
assert impl in ['ref', 'cuda']
if impl == 'cuda' and x.device.type == 'cuda' and _init():
return _filtered_lrelu_cuda(up=up, down=down, padding=padding, gain=gain, slope=slope, clamp=clamp, flip_filter=flip_filter).apply(x, fu, fd, b, None, 0, 0)
return _filtered_lrelu_ref(x, fu=fu, fd=fd, b=b, up=up, down=down, padding=padding, gain=gain, slope=slope, clamp=clamp, flip_filter=flip_filter)
#----------------------------------------------------------------------------
@misc.profiled_function
def _filtered_lrelu_ref(x, fu=None, fd=None, b=None, up=1, down=1, padding=0, gain=np.sqrt(2), slope=0.2, clamp=None, flip_filter=False):
"""Slow and memory-inefficient reference implementation of `filtered_lrelu()` using
existing `upfirdn2n()` and `bias_act()` ops.
"""
assert isinstance(x, torch.Tensor) and x.ndim == 4
fu_w, fu_h = _get_filter_size(fu)
fd_w, fd_h = _get_filter_size(fd)
if b is not None:
assert isinstance(b, torch.Tensor) and b.dtype == x.dtype
misc.assert_shape(b, [x.shape[1]])
assert isinstance(up, int) and up >= 1
assert isinstance(down, int) and down >= 1
px0, px1, py0, py1 = _parse_padding(padding)
assert gain == float(gain) and gain > 0
assert slope == float(slope) and slope >= 0
assert clamp is None or (clamp == float(clamp) and clamp >= 0)
# Calculate output size.
batch_size, channels, in_h, in_w = x.shape
in_dtype = x.dtype
out_w = (in_w * up + (px0 + px1) - (fu_w - 1) - (fd_w - 1) + (down - 1)) // down
out_h = (in_h * up + (py0 + py1) - (fu_h - 1) - (fd_h - 1) + (down - 1)) // down
# Compute using existing ops.
x = bias_act.bias_act(x=x, b=b) # Apply bias.
x = upfirdn2d.upfirdn2d(x=x, f=fu, up=up, padding=[px0, px1, py0, py1], gain=up**2, flip_filter=flip_filter) # Upsample.
x = bias_act.bias_act(x=x, act='lrelu', alpha=slope, gain=gain, clamp=clamp) # Bias, leaky ReLU, clamp.
x = upfirdn2d.upfirdn2d(x=x, f=fd, down=down, flip_filter=flip_filter) # Downsample.
# Check output shape & dtype.
misc.assert_shape(x, [batch_size, channels, out_h, out_w])
assert x.dtype == in_dtype
return x
#----------------------------------------------------------------------------
_filtered_lrelu_cuda_cache = dict()
def _filtered_lrelu_cuda(up=1, down=1, padding=0, gain=np.sqrt(2), slope=0.2, clamp=None, flip_filter=False):
"""Fast CUDA implementation of `filtered_lrelu()` using custom ops.
"""
assert isinstance(up, int) and up >= 1
assert isinstance(down, int) and down >= 1
px0, px1, py0, py1 = _parse_padding(padding)
assert gain == float(gain) and gain > 0
gain = float(gain)
assert slope == float(slope) and slope >= 0
slope = float(slope)
assert clamp is None or (clamp == float(clamp) and clamp >= 0)
clamp = float(clamp if clamp is not None else 'inf')
# Lookup from cache.
key = (up, down, px0, px1, py0, py1, gain, slope, clamp, flip_filter)
if key in _filtered_lrelu_cuda_cache:
return _filtered_lrelu_cuda_cache[key]
# Forward op.
class FilteredLReluCuda(torch.autograd.Function):
@staticmethod
def forward(ctx, x, fu, fd, b, si, sx, sy): # pylint: disable=arguments-differ
assert isinstance(x, torch.Tensor) and x.ndim == 4
# Replace empty up/downsample kernels with full 1x1 kernels (faster than separable).
if fu is None:
fu = torch.ones([1, 1], dtype=torch.float32, device=x.device)
if fd is None:
fd = torch.ones([1, 1], dtype=torch.float32, device=x.device)
assert 1 <= fu.ndim <= 2
assert 1 <= fd.ndim <= 2
# Replace separable 1x1 kernels with full 1x1 kernels when scale factor is 1.
if up == 1 and fu.ndim == 1 and fu.shape[0] == 1:
fu = fu.square()[None]
if down == 1 and fd.ndim == 1 and fd.shape[0] == 1:
fd = fd.square()[None]
# Missing sign input tensor.
if si is None:
si = torch.empty([0])
# Missing bias tensor.
if b is None:
b = torch.zeros([x.shape[1]], dtype=x.dtype, device=x.device)
# Construct internal sign tensor only if gradients are needed.
write_signs = (si.numel() == 0) and (x.requires_grad or b.requires_grad)
# Warn if input storage strides are not in decreasing order due to e.g. channels-last layout.
strides = [x.stride(i) for i in range(x.ndim) if x.size(i) > 1]
if any(a < b for a, b in zip(strides[:-1], strides[1:])):
warnings.warn("low-performance memory layout detected in filtered_lrelu input", RuntimeWarning)
# Call C++/Cuda plugin if datatype is supported.
if x.dtype in [torch.float16, torch.float32]:
if torch.cuda.current_stream(x.device) != torch.cuda.default_stream(x.device):
warnings.warn("filtered_lrelu called with non-default cuda stream but concurrent execution is not supported", RuntimeWarning)
y, so, return_code = _plugin.filtered_lrelu(x, fu, fd, b, si, up, down, px0, px1, py0, py1, sx, sy, gain, slope, clamp, flip_filter, write_signs)
else:
return_code = -1
# No Cuda kernel found? Fall back to generic implementation. Still more memory efficient than the reference implementation because
# only the bit-packed sign tensor is retained for gradient computation.
if return_code < 0:
warnings.warn("filtered_lrelu called with parameters that have no optimized CUDA kernel, using generic fallback", RuntimeWarning)
y = x.add(b.unsqueeze(-1).unsqueeze(-1)) # Add bias.
y = upfirdn2d.upfirdn2d(x=y, f=fu, up=up, padding=[px0, px1, py0, py1], gain=up**2, flip_filter=flip_filter) # Upsample.
so = _plugin.filtered_lrelu_act_(y, si, sx, sy, gain, slope, clamp, write_signs) # Activation function and sign handling. Modifies y in-place.
y = upfirdn2d.upfirdn2d(x=y, f=fd, down=down, flip_filter=flip_filter) # Downsample.
# Prepare for gradient computation.
ctx.save_for_backward(fu, fd, (si if si.numel() else so))
ctx.x_shape = x.shape
ctx.y_shape = y.shape
ctx.s_ofs = sx, sy
return y
@staticmethod
def backward(ctx, dy): # pylint: disable=arguments-differ
fu, fd, si = ctx.saved_tensors
_, _, xh, xw = ctx.x_shape
_, _, yh, yw = ctx.y_shape
sx, sy = ctx.s_ofs
dx = None # 0
dfu = None; assert not ctx.needs_input_grad[1]
dfd = None; assert not ctx.needs_input_grad[2]
db = None # 3
dsi = None; assert not ctx.needs_input_grad[4]
dsx = None; assert not ctx.needs_input_grad[5]
dsy = None; assert not ctx.needs_input_grad[6]
if ctx.needs_input_grad[0] or ctx.needs_input_grad[3]:
pp = [
(fu.shape[-1] - 1) + (fd.shape[-1] - 1) - px0,
xw * up - yw * down + px0 - (up - 1),
(fu.shape[0] - 1) + (fd.shape[0] - 1) - py0,
xh * up - yh * down + py0 - (up - 1),
]
gg = gain * (up ** 2) / (down ** 2)
ff = (not flip_filter)
sx = sx - (fu.shape[-1] - 1) + px0
sy = sy - (fu.shape[0] - 1) + py0
dx = _filtered_lrelu_cuda(up=down, down=up, padding=pp, gain=gg, slope=slope, clamp=None, flip_filter=ff).apply(dy, fd, fu, None, si, sx, sy)
if ctx.needs_input_grad[3]:
db = dx.sum([0, 2, 3])
return dx, dfu, dfd, db, dsi, dsx, dsy
# Add to cache.
_filtered_lrelu_cuda_cache[key] = FilteredLReluCuda
return FilteredLReluCuda
#----------------------------------------------------------------------------