583f2bdd13
BOMs barf on UTF-8 decoding within PyTorch: File "D:\Soft\Miniconda3\lib\site-packages\torch\utils_cpp_extension_versioner.py", line 16, in hash_source_files hash_value = update_hash(hash_value, file.read()) UnicodeDecodeError: 'gbk' codec can't decode byte 0xbf in position 2: illegal multibyte sequence Should fix #10, #14
238 lines
8.4 KiB
Python
238 lines
8.4 KiB
Python
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|
#
|
|
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
# and proprietary rights in and to this software, related documentation
|
|
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
# distribution of this software and related documentation without an express
|
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
|
|
"""Streaming images and labels from datasets created with dataset_tool.py."""
|
|
|
|
import os
|
|
import numpy as np
|
|
import zipfile
|
|
import PIL.Image
|
|
import json
|
|
import torch
|
|
import dnnlib
|
|
|
|
try:
|
|
import pyspng
|
|
except ImportError:
|
|
pyspng = None
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
class Dataset(torch.utils.data.Dataset):
|
|
def __init__(self,
|
|
name, # Name of the dataset.
|
|
raw_shape, # Shape of the raw image data (NCHW).
|
|
max_size = None, # Artificially limit the size of the dataset. None = no limit. Applied before xflip.
|
|
use_labels = False, # Enable conditioning labels? False = label dimension is zero.
|
|
xflip = False, # Artificially double the size of the dataset via x-flips. Applied after max_size.
|
|
random_seed = 0, # Random seed to use when applying max_size.
|
|
):
|
|
self._name = name
|
|
self._raw_shape = list(raw_shape)
|
|
self._use_labels = use_labels
|
|
self._raw_labels = None
|
|
self._label_shape = None
|
|
|
|
# Apply max_size.
|
|
self._raw_idx = np.arange(self._raw_shape[0], dtype=np.int64)
|
|
if (max_size is not None) and (self._raw_idx.size > max_size):
|
|
np.random.RandomState(random_seed).shuffle(self._raw_idx)
|
|
self._raw_idx = np.sort(self._raw_idx[:max_size])
|
|
|
|
# Apply xflip.
|
|
self._xflip = np.zeros(self._raw_idx.size, dtype=np.uint8)
|
|
if xflip:
|
|
self._raw_idx = np.tile(self._raw_idx, 2)
|
|
self._xflip = np.concatenate([self._xflip, np.ones_like(self._xflip)])
|
|
|
|
def _get_raw_labels(self):
|
|
if self._raw_labels is None:
|
|
self._raw_labels = self._load_raw_labels() if self._use_labels else None
|
|
if self._raw_labels is None:
|
|
self._raw_labels = np.zeros([self._raw_shape[0], 0], dtype=np.float32)
|
|
assert isinstance(self._raw_labels, np.ndarray)
|
|
assert self._raw_labels.shape[0] == self._raw_shape[0]
|
|
assert self._raw_labels.dtype in [np.float32, np.int64]
|
|
if self._raw_labels.dtype == np.int64:
|
|
assert self._raw_labels.ndim == 1
|
|
assert np.all(self._raw_labels >= 0)
|
|
return self._raw_labels
|
|
|
|
def close(self): # to be overridden by subclass
|
|
pass
|
|
|
|
def _load_raw_image(self, raw_idx): # to be overridden by subclass
|
|
raise NotImplementedError
|
|
|
|
def _load_raw_labels(self): # to be overridden by subclass
|
|
raise NotImplementedError
|
|
|
|
def __getstate__(self):
|
|
return dict(self.__dict__, _raw_labels=None)
|
|
|
|
def __del__(self):
|
|
try:
|
|
self.close()
|
|
except:
|
|
pass
|
|
|
|
def __len__(self):
|
|
return self._raw_idx.size
|
|
|
|
def __getitem__(self, idx):
|
|
image = self._load_raw_image(self._raw_idx[idx])
|
|
assert isinstance(image, np.ndarray)
|
|
assert list(image.shape) == self.image_shape
|
|
assert image.dtype == np.uint8
|
|
if self._xflip[idx]:
|
|
assert image.ndim == 3 # CHW
|
|
image = image[:, :, ::-1]
|
|
return image.copy(), self.get_label(idx)
|
|
|
|
def get_label(self, idx):
|
|
label = self._get_raw_labels()[self._raw_idx[idx]]
|
|
if label.dtype == np.int64:
|
|
onehot = np.zeros(self.label_shape, dtype=np.float32)
|
|
onehot[label] = 1
|
|
label = onehot
|
|
return label.copy()
|
|
|
|
def get_details(self, idx):
|
|
d = dnnlib.EasyDict()
|
|
d.raw_idx = int(self._raw_idx[idx])
|
|
d.xflip = (int(self._xflip[idx]) != 0)
|
|
d.raw_label = self._get_raw_labels()[d.raw_idx].copy()
|
|
return d
|
|
|
|
@property
|
|
def name(self):
|
|
return self._name
|
|
|
|
@property
|
|
def image_shape(self):
|
|
return list(self._raw_shape[1:])
|
|
|
|
@property
|
|
def num_channels(self):
|
|
assert len(self.image_shape) == 3 # CHW
|
|
return self.image_shape[0]
|
|
|
|
@property
|
|
def resolution(self):
|
|
assert len(self.image_shape) == 3 # CHW
|
|
assert self.image_shape[1] == self.image_shape[2]
|
|
return self.image_shape[1]
|
|
|
|
@property
|
|
def label_shape(self):
|
|
if self._label_shape is None:
|
|
raw_labels = self._get_raw_labels()
|
|
if raw_labels.dtype == np.int64:
|
|
self._label_shape = [int(np.max(raw_labels)) + 1]
|
|
else:
|
|
self._label_shape = raw_labels.shape[1:]
|
|
return list(self._label_shape)
|
|
|
|
@property
|
|
def label_dim(self):
|
|
assert len(self.label_shape) == 1
|
|
return self.label_shape[0]
|
|
|
|
@property
|
|
def has_labels(self):
|
|
return any(x != 0 for x in self.label_shape)
|
|
|
|
@property
|
|
def has_onehot_labels(self):
|
|
return self._get_raw_labels().dtype == np.int64
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
class ImageFolderDataset(Dataset):
|
|
def __init__(self,
|
|
path, # Path to directory or zip.
|
|
resolution = None, # Ensure specific resolution, None = highest available.
|
|
**super_kwargs, # Additional arguments for the Dataset base class.
|
|
):
|
|
self._path = path
|
|
self._zipfile = None
|
|
|
|
if os.path.isdir(self._path):
|
|
self._type = 'dir'
|
|
self._all_fnames = {os.path.relpath(os.path.join(root, fname), start=self._path) for root, _dirs, files in os.walk(self._path) for fname in files}
|
|
elif self._file_ext(self._path) == '.zip':
|
|
self._type = 'zip'
|
|
self._all_fnames = set(self._get_zipfile().namelist())
|
|
else:
|
|
raise IOError('Path must point to a directory or zip')
|
|
|
|
PIL.Image.init()
|
|
self._image_fnames = sorted(fname for fname in self._all_fnames if self._file_ext(fname) in PIL.Image.EXTENSION)
|
|
if len(self._image_fnames) == 0:
|
|
raise IOError('No image files found in the specified path')
|
|
|
|
name = os.path.splitext(os.path.basename(self._path))[0]
|
|
raw_shape = [len(self._image_fnames)] + list(self._load_raw_image(0).shape)
|
|
if resolution is not None and (raw_shape[2] != resolution or raw_shape[3] != resolution):
|
|
raise IOError('Image files do not match the specified resolution')
|
|
super().__init__(name=name, raw_shape=raw_shape, **super_kwargs)
|
|
|
|
@staticmethod
|
|
def _file_ext(fname):
|
|
return os.path.splitext(fname)[1].lower()
|
|
|
|
def _get_zipfile(self):
|
|
assert self._type == 'zip'
|
|
if self._zipfile is None:
|
|
self._zipfile = zipfile.ZipFile(self._path)
|
|
return self._zipfile
|
|
|
|
def _open_file(self, fname):
|
|
if self._type == 'dir':
|
|
return open(os.path.join(self._path, fname), 'rb')
|
|
if self._type == 'zip':
|
|
return self._get_zipfile().open(fname, 'r')
|
|
return None
|
|
|
|
def close(self):
|
|
try:
|
|
if self._zipfile is not None:
|
|
self._zipfile.close()
|
|
finally:
|
|
self._zipfile = None
|
|
|
|
def __getstate__(self):
|
|
return dict(super().__getstate__(), _zipfile=None)
|
|
|
|
def _load_raw_image(self, raw_idx):
|
|
fname = self._image_fnames[raw_idx]
|
|
with self._open_file(fname) as f:
|
|
if pyspng is not None and self._file_ext(fname) == '.png':
|
|
image = pyspng.load(f.read())
|
|
else:
|
|
image = np.array(PIL.Image.open(f))
|
|
if image.ndim == 2:
|
|
image = image[:, :, np.newaxis] # HW => HWC
|
|
image = image.transpose(2, 0, 1) # HWC => CHW
|
|
return image
|
|
|
|
def _load_raw_labels(self):
|
|
fname = 'dataset.json'
|
|
if fname not in self._all_fnames:
|
|
return None
|
|
with self._open_file(fname) as f:
|
|
labels = json.load(f)['labels']
|
|
if labels is None:
|
|
return None
|
|
labels = dict(labels)
|
|
labels = [labels[fname.replace('\\', '/')] for fname in self._image_fnames]
|
|
labels = np.array(labels)
|
|
labels = labels.astype({1: np.int64, 2: np.float32}[labels.ndim])
|
|
return labels
|
|
|
|
#----------------------------------------------------------------------------
|