Usage: train.py [OPTIONS] Train a GAN using the techniques described in the paper "Alias-Free Generative Adversarial Networks". Examples: # Train StyleGAN3-T for AFHQv2 using 8 GPUs. python train.py --outdir=~/training-runs --cfg=stylegan3-t --data=~/datasets/afhqv2-512x512.zip \ --gpus=8 --batch=32 --gamma=8.2 --mirror=1 # Fine-tune StyleGAN3-R for MetFaces-U using 1 GPU, starting from the pre-trained FFHQ-U pickle. python train.py --outdir=~/training-runs --cfg=stylegan3-r --data=~/datasets/metfacesu-1024x1024.zip \ --gpus=8 --batch=32 --gamma=6.6 --mirror=1 --kimg=5000 --snap=5 \ --resume=https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/stylegan3-r-ffhqu-1024x1024.pkl # Train StyleGAN2 for FFHQ at 1024x1024 resolution using 8 GPUs. python train.py --outdir=~/training-runs --cfg=stylegan2 --data=~/datasets/ffhq-1024x1024.zip \ --gpus=8 --batch=32 --gamma=10 --mirror=1 --aug=noaug Options: --outdir DIR Where to save the results [required] --cfg [stylegan3-t|stylegan3-r|stylegan2] Base configuration [required] --data [ZIP|DIR] Training data [required] --gpus INT Number of GPUs to use [required] --batch INT Total batch size [required] --gamma FLOAT R1 regularization weight [required] --cond BOOL Train conditional model [default: False] --mirror BOOL Enable dataset x-flips [default: False] --aug [noaug|ada|fixed] Augmentation mode [default: ada] --resume [PATH|URL] Resume from given network pickle --freezed INT Freeze first layers of D [default: 0] --p FLOAT Probability for --aug=fixed [default: 0.2] --target FLOAT Target value for --aug=ada [default: 0.6] --batch-gpu INT Limit batch size per GPU --cbase INT Capacity multiplier [default: 32768] --cmax INT Max. feature maps [default: 512] --glr FLOAT G learning rate [default: varies] --dlr FLOAT D learning rate [default: 0.002] --map-depth INT Mapping network depth [default: varies] --mbstd-group INT Minibatch std group size [default: 4] --desc STR String to include in result dir name --metrics [NAME|A,B,C|none] Quality metrics [default: fid50k_full] --kimg KIMG Total training duration [default: 25000] --tick KIMG How often to print progress [default: 4] --snap TICKS How often to save snapshots [default: 50] --seed INT Random seed [default: 0] --fp32 BOOL Disable mixed-precision [default: False] --nobench BOOL Disable cuDNN benchmarking [default: False] --workers INT DataLoader worker processes [default: 3] -n, --dry-run Print training options and exit --help Show this message and exit.