Refactor logic into separate files

This commit is contained in:
Ruben van de Ven 2022-11-25 19:54:23 +01:00
parent e2db2688e0
commit c1f7429ca1
9 changed files with 2175 additions and 0 deletions

556
Build_Style_Archive.ipynb Normal file

File diff suppressed because one or more lines are too long

226
Snapshot_images.ipynb Normal file

File diff suppressed because one or more lines are too long

631
ThisPlaceDoesExist.ipynb Normal file
View file

@ -0,0 +1,631 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": 35,
"id": "f4ee99c4-9c28-4fe4-9408-e130a0d446d3",
"metadata": {},
"outputs": [],
"source": [
"from runs import Run, Snapshot, get_projections_in_dir, get_runs_in_dir\n",
"from scipy.ndimage.filters import uniform_filter1d\n",
"import cv2\n",
"from PIL import Image\n",
"import os"
]
},
{
"cell_type": "code",
"execution_count": 2,
"id": "d362cae7-c5c9-4127-b221-92c859aa1620",
"metadata": {},
"outputs": [],
"source": [
"def is_main():\n",
" \"\"\"Return True if this notebook is being run by calling\n",
" %run in another notebook, False otherwise.\n",
" works around jupyter bug: https://github.com/ipython/ipython/issues/10967\n",
" \"\"\"\n",
" try:\n",
" __file__\n",
" # __file__ has been defined, so this notebook is \n",
" # being run in a parent notebook\n",
" return True\n",
"\n",
" except NameError:\n",
" # __file__ has not been defined, so this notebook is \n",
" # not being run in a parent notebook\n",
" return False\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"id": "2544f23f-3b2c-4d29-95a6-031cecab1e08",
"metadata": {},
"outputs": [],
"source": [
"args = {\n",
" 'runs_dir': 'training-runs', \n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 12,
"id": "4c428611-8d75-4f9a-ae5a-7960e7b01470",
"metadata": {},
"outputs": [],
"source": [
"runs = get_runs_in_dir(args['runs_dir'])\n"
]
},
{
"cell_type": "markdown",
"id": "7f77f181-059a-4568-8088-1eb86a1a172a",
"metadata": {},
"source": [
"See [Snapshot_images.ipynb](Snapshot_images.ipynb) for examples of each run/snapshot."
]
},
{
"cell_type": "code",
"execution_count": 5,
"id": "9a5c4a18-0389-4d36-989e-7a120db590ab",
"metadata": {},
"outputs": [],
"source": [
"# snapshot = runs[3].snapshots[70]"
]
},
{
"cell_type": "markdown",
"id": "c3aa8404-aeb0-4f63-b4b4-c278f0cf3766",
"metadata": {},
"source": [
"## Plot run metrics\n",
"\n",
"We can plot the progress of the metrics (fid) for each run. Sommige runs zijn een vervolg op een eerder run. Dit zou kunnen zijn om het netwerk een voorgetraind startpunt te geven, maar in dit geval was het vooral omdat de training zo nu en dan was gestopt en weer herstart (wat een 'nieuwe' run geeft."
]
},
{
"cell_type": "code",
"execution_count": 10,
"id": "c180db45-9bf1-4f0a-ab55-62b476a5897c",
"metadata": {},
"outputs": [],
"source": [
"# importing package\n",
"import matplotlib.pyplot as plt\n",
"\n",
"def plot_runs(runs, dpi=300, palette=None):\n",
" \n",
" plt.figure(dpi=dpi)\n",
" plt.yscale('log')\n",
" for i, run in enumerate(runs):\n",
" x = [s.cumulative_iteration for s in run.snapshots]\n",
" y = [s.fid for s in run.snapshots]\n",
" # plot lines\n",
" c = palette[i%len(palette)] if palette else None\n",
" plt.plot(x, y, label = f\"{i} {run.id}\", c=c)\n",
"\n",
" \n",
" return plt\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"id": "22c74f41-65e7-461a-9094-f0b3d8738c82",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'runs' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m/tmp/ipykernel_1/862876608.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;31m# def is_main():\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0mplot\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mplot_runs\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mruns\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mplot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlegend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mbbox_to_anchor\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mloc\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m\"lower left\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0mplot\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'runs' is not defined"
]
}
],
"source": [
"def is_main():\n",
" plot = plot_runs(runs)\n",
" plot.legend(bbox_to_anchor=(1,0), loc=\"lower left\")\n",
" plot.show()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"id": "b28462dc-63a7-4630-8cf2-44eb2869661a",
"metadata": {},
"outputs": [],
"source": [
"def plot_stats(stat_ids, runs, dpi=300, palette=None): \n",
" fig2, axes = plt.subplots(nrows=1, ncols=len(stat_ids), figsize=(10*len(stat_ids), 9), dpi=dpi)\n",
"\n",
" for i, ax in enumerate(axes):\n",
" ax.set_xlabel('kimg')\n",
" ax.set_ylabel(stat_ids[i])\n",
" ax.set_yscale('symlog', linthresh=1) # 0-1: linear, >1: log scale\n",
"\n",
" for i, run in enumerate(runs):\n",
" stats = [\n",
" [\n",
" s['Progress/kimg']['mean'] + run.kimg_offset\n",
" ] + [[s[sid]['mean'], s[sid]['std']] for sid in stat_ids]\n",
" for s in run.get_stats()\n",
" ]\n",
" x = [ s[0] for s in stats ]\n",
" \n",
" c = palette[i%len(palette)] if palette else None\n",
" # smooth slightly for better readability\n",
" for i, stat_id in enumerate(stat_ids):\n",
" error = [s[i+1][1] for s in stats]\n",
" y = uniform_filter1d([s[i+1][0] for s in stats], size=20)\n",
" axes[i].plot(x, y, label = f\"{i} {run.id}\", c=c)\n",
" # draw std dev:\n",
" # axes[i].fill_between(x, y-error, y+error,\n",
" # alpha=0.2,\n",
" # antialiased=True)\n",
"\n",
"\n",
" # print(x,y)\n",
" # x = [s.cumulative_iteration for s in stats]\n",
" # y = [s.fid for s in run.stats]\n",
" # # plot lines\n",
" # ax2.plot(x, y2, label = f\"{i} {run.id}\")\n",
" return plt"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8bb5a2db-4e04-4402-953c-262a4a010c96",
"metadata": {},
"outputs": [],
"source": [
"def is_main():\n",
" plot = plot_stats([\n",
" 'Loss/D/loss',\n",
" 'Loss/G/loss',\n",
" ], runs)\n",
" plot.legend()\n",
" plot.show()"
]
},
{
"cell_type": "markdown",
"id": "9c4d937f-0035-4760-a7de-93080dfe5438",
"metadata": {},
"source": [
"# excerpts\n",
"\n",
"Als we de runs met de laagste FID scores bekijken bekijken krijgen we een beeld van de kwaliteit van de netwerken.\n",
"\n",
"Wat vooral opvalt is dat het netwerk met gecropte beelden (00014+16) de meest kleurrijke beelden geeft en dus niet convergeert naar een beige-grijs zoals veel van de andere netwerken."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "461480c4-d4fe-4fc8-a7fa-6e66d468595a",
"metadata": {},
"outputs": [],
"source": [
"def is_main():\n",
" display(\n",
" runs[-1].snapshots[-10].iteration,\n",
" runs[-1].snapshots[-10].get_preview_img(8,1),\n",
" runs[-1].snapshots[-2].iteration,\n",
" runs[-1].snapshots[-2].get_preview_img(8,1),\n",
" runs[-1].snapshots[-1].iteration,\n",
" runs[-1].snapshots[-1].get_preview_img(8,1),\n",
" )"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9782b289-101d-4bc4-b9e4-8d0838dec09b",
"metadata": {},
"outputs": [],
"source": [
"def is_main():\n",
" display(\n",
" runs[3].snapshots[-1].get_preview_img(4,1),\n",
" runs[2].snapshots[-1].get_preview_img(4,1),\n",
" runs[5].snapshots[-1].get_preview_img(4,1)\n",
" )"
]
},
{
"cell_type": "markdown",
"id": "22668f34-fa75-4d05-abeb-c4b41bec8093",
"metadata": {},
"source": [
"# Stylegan 3 functions"
]
},
{
"cell_type": "markdown",
"id": "de9c301f-5a20-4eb7-87c1-83c8e67508f0",
"metadata": {},
"source": [
"Helper functions for Stylegan 3 operations"
]
},
{
"cell_type": "code",
"execution_count": 20,
"id": "b31b0b4b-7fde-4a8b-812e-5545c68ce64d",
"metadata": {},
"outputs": [],
"source": [
"import torch"
]
},
{
"cell_type": "markdown",
"id": "ab78ac4c-5e2d-456c-9afd-9639ad963b51",
"metadata": {},
"source": [
"Converts seeds to `z` space, `z`-space to `w`-space and use `w`-space to generate images and generated images to jupyter-widgets for visualisation"
]
},
{
"cell_type": "code",
"execution_count": 21,
"id": "bb0593f9-05df-47e7-9555-0af43951a49b",
"metadata": {},
"outputs": [],
"source": [
"# adapted from https://github.com/dvschultz/stylegan2-ada-pytorch/blob/9b6750b96dc9841816e8ac57b05f395d0f23c30d/generate.py\n",
"\n",
"def seeds_to_zs(G,seeds):\n",
" zs = []\n",
" for seed_idx, seed in enumerate(seeds):\n",
" z = np.random.RandomState(seed).randn(1, G.z_dim)\n",
" zs.append(z)\n",
" return zs\n",
"\n",
"def zs_to_ws(G,device,label,truncation_psi,zs):\n",
" ws = []\n",
" for z in zs:\n",
" z = torch.from_numpy(z).to(device)\n",
" w = G.mapping(z, label, truncation_psi=truncation_psi, truncation_cutoff=8)\n",
" ws.append(w)\n",
" return ws\n",
"\n",
"def images(G,device,inputs,space,truncation_psi,label,noise_mode,start=None,stop=None):\n",
" \"\"\"Generate image for z or w space image (deprecated)\"\"\"\n",
" if(start is not None and stop is not None):\n",
" tp = start\n",
" tp_i = (stop-start)/len(inputs)\n",
"\n",
" for idx, i in enumerate(inputs):\n",
" # print('Generating image for frame %d/%d ...' % (idx, len(inputs)))\n",
" \n",
" if (space=='z'):\n",
" z = torch.from_numpy(i).to(device)\n",
" if(start is not None and stop is not None):\n",
" img = G(z, label, truncation_psi=tp, noise_mode=noise_mode)\n",
" tp = tp+tp_i\n",
" else:\n",
" img = G(z, label, truncation_psi=truncation_psi, noise_mode=noise_mode)\n",
" else:\n",
" if len(i.shape) == 2: \n",
" i = torch.from_numpy(i).unsqueeze(0).to(device)\n",
" img = G.synthesis(i, noise_mode=noise_mode, force_fp32=True)\n",
" img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)\n",
" yield f\"{idx:04d}\", Image.fromarray(img[0].cpu().numpy(), 'RGB')\n",
"\n",
"def w_to_img(G, device, noise_mode, w):\n",
" img = G.synthesis(w, noise_mode=noise_mode, force_fp32=True)\n",
" img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)\n",
" return Image.fromarray(img[0].cpu().numpy(), 'RGB')\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "efafbb3a-7d2c-4b6a-a626-f06dd1b2b1ec",
"metadata": {},
"source": [
"Interpolation of vectors, to browse latent space."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "014449b1-1293-49bb-90bf-a1949315183c",
"metadata": {},
"outputs": [],
"source": [
"def interpolate(G,device,projected_w,seeds,random_seed,space,truncation_psi,label,frames,noise_mode,outdir,interpolation,\n",
" easing, diameter, start=None,stop=None):\n",
" if(interpolation=='noiseloop' or interpolation=='circularloop'):\n",
" if seeds is not None:\n",
" print(f'Warning: interpolation type: \"{interpolation}\" doesnt support set seeds.')\n",
"\n",
" if(interpolation=='noiseloop'):\n",
" points = noiseloop(frames, diameter, random_seed)\n",
" elif(interpolation=='circularloop'):\n",
" points = circularloop(frames, diameter, random_seed, seeds)\n",
"\n",
" else:\n",
" if projected_w is not None:\n",
" points = np.load(projected_w)['w']\n",
" else:\n",
" # get zs from seeds\n",
" points = seeds_to_zs(G,seeds) \n",
" # convert to ws\n",
" if(space=='w'):\n",
" points = zs_to_ws(G,device,label,truncation_psi,points)\n",
"\n",
" # get interpolation points\n",
" if(interpolation=='linear'):\n",
" points = line_interpolate(points,frames,easing)\n",
" elif(interpolation=='slerp'):\n",
" points = slerp_interpolate(points,frames)\n",
" \n",
" # generate frames\n",
" for idx, img in images(G,device,points,space,truncation_psi,label,noise_mode,outdir,start,stop):\n",
" yield idx, img\n",
"\n",
"# slightly modified version of\n",
"# https://github.com/PDillis/stylegan2-fun/blob/master/run_generator.py#L399\n",
"def slerp(t, v0, v1, DOT_THRESHOLD=0.9995):\n",
" '''\n",
" Spherical linear interpolation\n",
" Args:\n",
" t (float/np.ndarray): Float value between 0.0 and 1.0\n",
" v0 (np.ndarray): Starting vector\n",
" v1 (np.ndarray): Final vector\n",
" DOT_THRESHOLD (float): Threshold for considering the two vectors as\n",
" colineal. Not recommended to alter this.\n",
" Returns:\n",
" v2 (np.ndarray): Interpolation vector between v0 and v1\n",
" '''\n",
" v0 = v0.cpu().detach().numpy() if hasattr(v0, 'cpu') else v0\n",
" v1 = v1.cpu().detach().numpy() if hasattr(v1, 'cpu') else v1\n",
" # Copy the vectors to reuse them later\n",
" v0_copy = np.copy(v0)\n",
" v1_copy = np.copy(v1)\n",
" # Normalize the vectors to get the directions and angles\n",
" v0 = v0 / np.linalg.norm(v0)\n",
" v1 = v1 / np.linalg.norm(v1)\n",
" # Dot product with the normalized vectors (can't use np.dot in W)\n",
" dot = np.sum(v0 * v1)\n",
" # If absolute value of dot product is almost 1, vectors are ~colineal, so use lerp\n",
" if np.abs(dot) > DOT_THRESHOLD:\n",
" return lerp(t, v0_copy, v1_copy)\n",
" # Calculate initial angle between v0 and v1\n",
" theta_0 = np.arccos(dot)\n",
" sin_theta_0 = np.sin(theta_0)\n",
" # Angle at timestep t\n",
" theta_t = theta_0 * t\n",
" sin_theta_t = np.sin(theta_t)\n",
" # Finish the slerp algorithm\n",
" s0 = np.sin(theta_0 - theta_t) / sin_theta_0\n",
" s1 = sin_theta_t / sin_theta_0\n",
" v2 = s0 * v0_copy + s1 * v1_copy\n",
" return torch.from_numpy(v2).to(\"cuda\")\n",
"\n",
"def slerp_interpolate(zs, steps):\n",
" out = []\n",
" for i in range(len(zs)-1):\n",
" for index in range(steps):\n",
" fraction = index/float(steps)\n",
" out.append(slerp(fraction,zs[i],zs[i+1]))\n",
" return out\n"
]
},
{
"cell_type": "markdown",
"id": "60be2986-914d-4032-8554-cdd3ab52f827",
"metadata": {},
"source": [
"## Project an imag to the latent space"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f802546c-6e74-440f-8d88-9e5a166b319d",
"metadata": {},
"outputs": [],
"source": [
"import subprocess, operator\n",
"\n",
"def project_img_to_z(snapshot: Snapshot, image_filename: str, steps=1000, replace_if_exists=False) -> dict:\n",
" \n",
" # imagenr = image_filename[-12:-4]\n",
" image_name = image_filename[:-4]\n",
" runnr = snapshot.run.as_nr\n",
" # !!python pbaylies_projector.py --network $snapshot_pkl --outdir out/projections/$runnr-$imagenr --target-image $image_filename --use-clip=False\n",
" \n",
" if replace_if_exists or not os.path.exists(f\"out/projections/{runnr}/{image_name}/proj.png\"):\n",
" process = subprocess.Popen([\n",
" \"python\", \"pbaylies_projector.py\",\n",
" \"--network\" , snapshot.pkl_path,\n",
" \"--outdir\", f\"out/projections/{runnr}/{image_name}\",\n",
" \"--target-image\", image_filename,\n",
" \"--use-clip\", \"False\",\n",
" \"--num-steps\", str(steps),\n",
" \"--save-video\", \"False\"\n",
" ], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)\n",
" stdout, stderr = process.communicate()\n",
" lines = stdout.split(\"\\n\")\n",
" lossess_and_distances = [operator.itemgetter(-1,-3)(line.split(\" \")) for line in lines if line.startswith(\"step\")]\n",
" print(stderr)\n",
" loss, dist = lossess_and_distances[-1]\n",
" else:\n",
" # TODO: get loss and dist from somewhere? (currently not using it much)\n",
" loss, dist = (None, None)\n",
"\n",
" return {\n",
" \"img\": f\"out/projections/{runnr}-{imagenr}/proj.png\",\n",
" \"src_img\": f\"out/projections/{runnr}-{imagenr}/target.png\",\n",
" \"src\": image_filename,\n",
" \"npz\": f\"out/projections/{runnr}-{imagenr}/projected_w.npz\",\n",
" \"loss\": loss,\n",
" \"dist\": dist\n",
" }\n",
"\n"
]
},
{
"cell_type": "markdown",
"id": "6f10a7eb-5056-41da-9cfd-894a1c772e0d",
"metadata": {},
"source": [
"# Displaying Videos and Images"
]
},
{
"cell_type": "code",
"execution_count": 47,
"id": "f7ccb1c5-13c3-4ff9-9030-125622ccf93a",
"metadata": {},
"outputs": [],
"source": [
"def img_to_widget(img):\n",
" buff = io.BytesIO()\n",
" img.save(buff, format='png')\n",
" \n",
" return widgets.Image(value=buff.getvalue(), format='png', width=run_data['resolution'], height=run_data['resolution'])\n",
"\n",
"def video_to_widget(filename):\n",
" with open(filename, 'rb') as fp:\n",
" video = fp.read()\n",
" return widgets.Video(value=video)\n",
"\n",
"def image_grid(imgs, cols=None, rows=None, margin = 10):\n",
"# create image grid, if no size is given, put all on horizontal axis\n",
" if cols is None or rows is None:\n",
" cols = len(imgs)\n",
" rows = 1\n",
" \n",
" w, h = imgs[0].size\n",
" w, h = w+margin, h+margin\n",
" grid = Image.new('RGB', size=(cols*w-margin, rows*h-margin))\n",
" grid_w, grid_h = grid.size\n",
" \n",
" for i, img in enumerate(imgs):\n",
" grid.paste(img, box=(i%cols*w, i//cols*h))\n",
" return grid"
]
},
{
"cell_type": "markdown",
"id": "c988053f-4a6d-4f66-a40d-593bf5a35765",
"metadata": {},
"source": [
"# Postprocessing"
]
},
{
"cell_type": "markdown",
"id": "573284e5-1c27-415c-9876-4a4a7e6fc704",
"metadata": {},
"source": [
"Sometimes we like to generate videos from a series of ws"
]
},
{
"cell_type": "code",
"execution_count": 48,
"id": "7fd5f974-3f44-4f92-b1b8-7564400229fa",
"metadata": {},
"outputs": [],
"source": [
"from imageio_ffmpeg import write_frames\n",
"\n",
"def generator_to_video(generator, out_filename, fps, frame_size, quality):\n",
" writer = write_frames(out_filename, frame_size, quality=quality) # size is (width, height)\n",
" writer.send(None) # seed the generator\n",
" print(os.path.abspath(out_filename))\n",
" # output = cv2.VideoWriter(\n",
" # out_filename,\n",
" # # see http://mp4ra.org/#/codecs for codecs\n",
" # cv2.VideoWriter_fourcc(*'vp09'),\n",
" # fps,\n",
" # frame_size)\n",
" for frame in generator:\n",
" if type(frame) is Image.Image:\n",
" open_cv_image = np.array(frame) \n",
" # Conve\n",
" frame = open_cv_image[:, :, ::-1].copy()\n",
" # output.write(frame)\n",
" writer.send(frame)\n",
" \n",
" \n",
" # output.release()\n",
" writer.close()"
]
},
{
"cell_type": "code",
"execution_count": 46,
"id": "6ff4c6db-b48f-4ff4-b08c-e85138f0f307",
"metadata": {},
"outputs": [],
"source": [
"\n"
]
},
{
"cell_type": "code",
"execution_count": 33,
"id": "d0661104-72a7-4320-980a-1a702388659f",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"id": "e2aa2c98-cf1e-465a-9455-fe4a02f145ad",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "paris-stylegan3",
"language": "python",
"name": "paris-stylegan3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}

216
runs.py Normal file
View file

@ -0,0 +1,216 @@
import os
import datetime
import json
from typing import List
from PIL import Image
from enum import Enum
import logging
import numpy as np
import dnnlib
import legacy
logger = logging.getLogger('runs')
def jsonlines(filename):
# quick n dirty way to load jsonlines file
with open(filename, 'r') as fp:
for line in fp:
yield json.loads(line)
class Snapshot():
def __init__(self, run, metrics):
self.run = run
self.metrics = metrics
self.iteration = int(metrics["snapshot_pkl"][17:-4])
self.iteration_str = metrics["snapshot_pkl"][17:-4]
@property
def id(self):
return f"{self.run.as_nr}_{self.iteration_str}"
@property
def fid(self):
"""Fréchet inception distance, as calculated during training"""
return self.metrics['results']['fid50k_full']
@property
def cumulative_iteration(self):
"""Iteration nr, taking into account the snapshot the run.resumed_from"""
if self.run.resumed_from is None:
return self.iteration
return self.run.resumed_from.iteration + self.iteration
@property
def time(self):
return datetime.datetime.fromtimestamp(int(self.metrics['timestamp']))
@property
def pkl_path(self):
return os.path.join(self.run.directory, f"network-snapshot-{self.iteration_str}.pkl")
def load_generator(self, device):
with dnnlib.util.open_url(self.pkl_path) as f:
return legacy.load_network_pkl(f)['G_ema'].to(device) # type: ignore
def get_preview_img(self, cols = 1, rows = 1) -> Image:
file = os.path.join(self.run.directory, f"fakes{self.iteration_str}.png")
img = Image.open(file)
return img.crop((0,0, self.run.resolution * cols, self.run.resolution * rows))
class Run():
def __init__(self, directory):
self.directory = directory
self.id = os.path.basename(directory)
self.metric_path = os.path.join(self.directory, 'metric-fid50k_full.jsonl')
self.options_path = os.path.join(self.directory, 'training_options.json')
self.stats_path = os.path.join(self.directory, 'stats.jsonl')
with open (self.options_path) as fp:
self.training_options = json.load(fp)
self.resumed_from = None
if 'resume_pkl' in self.training_options:
resume_from_dir = os.path.dirname(self.training_options['resume_pkl'])
try:
self.resumed_from = [
s for s in
Run(resume_from_dir).snapshots
if os.path.abspath(s.pkl_path) == os.path.abspath(self.training_options['resume_pkl'])
][0]
except:
logger.warning("Could not load parent snapshot")
logger.debug()
if os.path.exists(self.metric_path):
self.snapshots = [Snapshot(self, l) for l in jsonlines(self.metric_path)]
else:
self.snapshots = []
@property
def as_nr(self):
return self.id[:5]
@property
def duration(self):
return self.snapshots[-1].time - self.snapshots[0].time
@property
def kimg_offset(self):
if not self.resumed_from:
return 0
return self.resumed_from.iteration
def get_stats(self):
"""fetch stats from stats.jsonl file
Each stats has `num` (nr. of datapoints),
`mean` (mean of points), `std` (std dev)
yields each line
"""
yield from jsonlines(self.stats_path)
def is_empty(self):
return len(self.snapshots) < 1
# def get_fids(self) -> dict:
# return {:l['results']['fid50k_full'] for l in jsonlines(self.metric_path)}
# @property
# def fakes(self):
# return sorted([f for f in os.listdir(rundir) if f.startswith('fake')])
@property
def dataset_id(self):
return list(filter(None, self.training_options["training_set_kwargs"]["path"].split(os.path.sep)))[-1]
def dataset_is_conditional(self):
return bool(self.training_options["training_set_kwargs"]["use_labels"])
@property
def resolution(self):
return self.training_options["training_set_kwargs"]["resolution"]
@property
def r1_gamma(self):
return self.training_options["loss_kwargs"]["r1_gamma"]
def get_summary(self):
return {
# "name": self.id,
"nr": self.as_nr,
"dataset": self.dataset_id,
"conditional": self.dataset_is_conditional(),
"resolution": self.resolution,
"gamma": self.r1_gamma,
"duration": self.duration,
# "finished": self.snapshots[-1].time,
"iterations": self.snapshots[-1].iteration,
"last_fid": self.snapshots[-1].fid
}
def get_runs_in_dir(dir_path, include_empty = False) -> List[Run]:
run_dirs = sorted(os.listdir(dir_path))
runs = []
for run_dir in run_dirs:
run = Run(os.path.join(dir_path, run_dir))
if include_empty or not run.is_empty():
runs.append(run)
return runs
class StreetType(Enum):
RUE = 'Rue'
AVENUE = 'Avenue'
BOULEVARD = 'Boulevard'
class Projection():
# TODO: add snapshot and dataset
def __init__(self, path, identifier, arrondisement: int, street_type: StreetType):
self.path = path
self.id = identifier
self.arrondisement = arrondisement
self.street_type = street_type
@property
def img_path(self):
return os.path.join(self.path, 'proj.png')
@property
def target_img_path(self):
return os.path.join(self.path, 'target.png')
@property
def w_path(self):
return os.path.join(self.path, 'projected_w.npz')
def load_w(self):
with np.load(self.w_path) as data:
return data['w']
@classmethod
def from_path(cls, path):
dirname = list(filter(None, path.split('/')))[-1]
parts = dirname.split('-')
arrondisement = int(parts[0])
street_type = None
for t in StreetType:
if parts[1].startswith(t.value):
street_type = t
break
if street_type is None:
raise Exception(f"Unable to determine street type for {path}")
return cls(path, dirname, arrondisement, street_type)
# for StreetType.
# street_type =
def get_projections_in_dir(projection_folder) -> List[Projection]:
projection_paths = [os.path.join(projection_folder, p) for p in os.listdir(projection_folder) if os.path.exists(os.path.join(projection_folder, p, "projected_w.npz"))]
return [Projection.from_path(p) for p in projection_paths]

View file

@ -0,0 +1,82 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
<script src="https://unpkg.com/pagedjs/dist/paged.polyfill.js"></script>
<link rel="stylesheet" href="style.css">
<link href="pagedjs-interface.css" rel="stylesheet" type="text/css" />
</head>
<body>
<section id='cover'>
<h1 class="title">This Place Does Exist</h1>
<h2>Stylegan 3 Snapshots</h2>
</section>
<section id="toc">
<h2>Table of contents</h2>
<img src="{{runs_graph}}" id='runs-graph'>
{{runs_table}}
<img src="{{runs_losses_graph}}" id='runs-losses-graph'>
</section>
{% for run in runs %}
<section class="run" id="run{{run.as_nr}}">
<h1>{{run.as_nr}}</h1>
<h2>{{run.id}}</h2>
<dl class="metadata">
<dt>dataset</dt>
<dd>{{run.dataset_id}}</dd>
<dt>conditional_dataset</dt>
<dd>{{run.dataset_is_conditional()}}</dd>
<dt>resolution</dt>
<dd>{{run.resolution}}</dd>
<dt>r1 gamma</dt>
<dd>{{run.r1_gamma}}</dd>
<dt>duration</dt>
<dd>{{run.duration}}</dd>
<dt>latest_snapshots</dt>
<dd>{{run.snapshots[-1].iteration}}</dd>
<dt>finished at</dt>
<dd>{{run.snapshots[-1].time}}</dd>
<dt>last_fid</dt>
<dd>{{run.snapshots[-1].fid}}</dd>
{% if run.resumed_from %}
<dt>resumed_from</dt>
<dd>{{run.resumed_from.run.id}} {{run.resumed_from.iteration_str}}</dd>
{% endif %}
</dl>
<div class="snapshots">
{% for snapshot in run.snapshots %}
<div class="snapshot">
<span class="iteration">{{snapshot.iteration}}</span>
<span class="time">{{snapshot.time}}</span>
<img src="imgs/{{snapshot.id}}.jpg">
</div>
{% endfor %}
</div>
</section>
{% endfor %}
</body>
</html>

View file

@ -0,0 +1,101 @@
:root{
font-family: Lexend, sans-serif;
font-size:10pt;
}
@page {
size: A4;
margin-top: 10mm;
margin-right: 20mm;
margin-bottom: 25mm;
margin-left: 15mm;
@bottom-center {
content: string(title, first-except);
/* text-transform: uppercase; */
}
}
@page :left{
@bottom-left {
content: counter(page);
}
}
@page :right{
@bottom-right {
content: counter(page);
}
}
@page :first{
@bottom-right{
content:none;
}
}
img{
width: 100%;
}
@media print {
@page: left {
margin-left: 35mm;
margin-right: 15mm;
}
@page: right {
margin-left: 15mm;
margin-right: 35mm;
}
/* all your book chapters in <section> elements...
you want your chapter to always start on the right page. */
section {
break-before: right;
}
h1 {
string-set: title content(text);
font-size: 8em;
margin-bottom:20px;
font-family: "Lexend Zetta";
}
.cover h1{
font-size: 4em;
}
h2{
font-weight:normal;
font-size:1.5em;
}
.tocitem::after{
content: target-counter(attr(data-ref), page) ;
margin-left: 10px;
}
.snapshot{
page-break-inside: avoid;
}
.snapshot .iteration{
float:right;
}
}
dt{
font-weight: bold;
}
table {
margin: 40px 0;
}

View file

@ -0,0 +1,180 @@
/* CSS for Paged.js interface v0.4 */
/* Change the look */
:root {
--color-background: whitesmoke;
--color-pageSheet: #cfcfcf;
--color-pageBox: violet;
--color-paper: white;
--color-marginBox: transparent;
--pagedjs-crop-color: black;
--pagedjs-crop-shadow: white;
--pagedjs-crop-stroke: 1px;
}
/* To define how the book look on the screen: */
@media screen, pagedjs-ignore {
body {
background-color: var(--color-background);
}
.pagedjs_pages {
display: flex;
width: calc(var(--pagedjs-width) * 2);
flex: 0;
flex-wrap: wrap;
margin: 0 auto;
}
.pagedjs_page {
background-color: var(--color-paper);
box-shadow: 0 0 0 1px var(--color-pageSheet);
margin: 0;
flex-shrink: 0;
flex-grow: 0;
margin-top: 10mm;
}
.pagedjs_first_page {
margin-left: var(--pagedjs-width);
}
.pagedjs_page:last-of-type {
margin-bottom: 10mm;
}
.pagedjs_pagebox{
box-shadow: 0 0 0 1px var(--color-pageBox);
}
.pagedjs_left_page{
z-index: 20;
width: calc(var(--pagedjs-bleed-left) + var(--pagedjs-pagebox-width))!important;
}
.pagedjs_left_page .pagedjs_bleed-right .pagedjs_marks-crop {
border-color: transparent;
}
.pagedjs_left_page .pagedjs_bleed-right .pagedjs_marks-middle{
width: 0;
}
.pagedjs_right_page{
z-index: 10;
position: relative;
left: calc(var(--pagedjs-bleed-left)*-1);
}
/* show the margin-box */
.pagedjs_margin-top-left-corner-holder,
.pagedjs_margin-top,
.pagedjs_margin-top-left,
.pagedjs_margin-top-center,
.pagedjs_margin-top-right,
.pagedjs_margin-top-right-corner-holder,
.pagedjs_margin-bottom-left-corner-holder,
.pagedjs_margin-bottom,
.pagedjs_margin-bottom-left,
.pagedjs_margin-bottom-center,
.pagedjs_margin-bottom-right,
.pagedjs_margin-bottom-right-corner-holder,
.pagedjs_margin-right,
.pagedjs_margin-right-top,
.pagedjs_margin-right-middle,
.pagedjs_margin-right-bottom,
.pagedjs_margin-left,
.pagedjs_margin-left-top,
.pagedjs_margin-left-middle,
.pagedjs_margin-left-bottom {
box-shadow: 0 0 0 1px inset var(--color-marginBox);
}
/* uncomment this part for recto/verso book : ------------------------------------ */
/*
.pagedjs_pages {
flex-direction: column;
width: 100%;
}
.pagedjs_first_page {
margin-left: 0;
}
.pagedjs_page {
margin: 0 auto;
margin-top: 10mm;
}
.pagedjs_left_page{
width: calc(var(--pagedjs-bleed-left) + var(--pagedjs-pagebox-width) + var(--pagedjs-bleed-left))!important;
}
.pagedjs_left_page .pagedjs_bleed-right .pagedjs_marks-crop{
border-color: var(--pagedjs-crop-color);
}
.pagedjs_left_page .pagedjs_bleed-right .pagedjs_marks-middle{
width: var(--pagedjs-cross-size)!important;
}
.pagedjs_right_page{
left: 0;
}
*/
/*--------------------------------------------------------------------------------------*/
/* uncomment this par to see the baseline : -------------------------------------------*/
/* .pagedjs_pagebox {
--pagedjs-baseline: 22px;
--pagedjs-baseline-position: 5px;
--pagedjs-baseline-color: cyan;
background: linear-gradient(transparent 0%, transparent calc(var(--pagedjs-baseline) - 1px), var(--pagedjs-baseline-color) calc(var(--pagedjs-baseline) - 1px), var(--pagedjs-baseline-color) var(--pagedjs-baseline)), transparent;
background-size: 100% var(--pagedjs-baseline);
background-repeat: repeat-y;
background-position-y: var(--pagedjs-baseline-position);
} */
/*--------------------------------------------------------------------------------------*/
}
/* Marks (to delete when merge in paged.js) */
.pagedjs_marks-crop{
z-index: 999999999999;
}
.pagedjs_bleed-top .pagedjs_marks-crop,
.pagedjs_bleed-bottom .pagedjs_marks-crop{
box-shadow: 1px 0px 0px 0px var(--pagedjs-crop-shadow);
}
.pagedjs_bleed-top .pagedjs_marks-crop:last-child,
.pagedjs_bleed-bottom .pagedjs_marks-crop:last-child{
box-shadow: -1px 0px 0px 0px var(--pagedjs-crop-shadow);
}
.pagedjs_bleed-left .pagedjs_marks-crop,
.pagedjs_bleed-right .pagedjs_marks-crop{
box-shadow: 0px 1px 0px 0px var(--pagedjs-crop-shadow);
}
.pagedjs_bleed-left .pagedjs_marks-crop:last-child,
.pagedjs_bleed-right .pagedjs_marks-crop:last-child{
box-shadow: 0px -1px 0px 0px var(--pagedjs-crop-shadow);
}

82
templates/runs.j2 Normal file
View file

@ -0,0 +1,82 @@
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Document</title>
<script src="https://unpkg.com/pagedjs/dist/paged.polyfill.js"></script>
<link rel="stylesheet" href="style.css">
<link href="pagedjs-interface.css" rel="stylesheet" type="text/css" />
</head>
<body>
<section id='cover'>
<h1 class="title">This Place Does Exist</h1>
<h2>Stylegan 3 Snapshots</h2>
</section>
<section id="toc">
<h2>Table of contents</h2>
<img src="{{runs_graph}}" id='runs-graph'>
{{runs_table}}
<img src="{{runs_losses_graph}}" id='runs-losses-graph'>
</section>
{% for run in runs %}
<section class="run" id="run{{run.as_nr}}">
<h1>{{run.as_nr}}</h1>
<h2>{{run.id}}</h2>
<dl class="metadata">
<dt>dataset</dt>
<dd>{{run.dataset_id}}</dd>
<dt>conditional_dataset</dt>
<dd>{{run.dataset_is_conditional()}}</dd>
<dt>resolution</dt>
<dd>{{run.resolution}}</dd>
<dt>r1 gamma</dt>
<dd>{{run.r1_gamma}}</dd>
<dt>duration</dt>
<dd>{{run.duration}}</dd>
<dt>latest_snapshots</dt>
<dd>{{run.snapshots[-1].iteration}}</dd>
<dt>finished at</dt>
<dd>{{run.snapshots[-1].time}}</dd>
<dt>last_fid</dt>
<dd>{{run.snapshots[-1].fid}}</dd>
{% if run.resumed_from %}
<dt>resumed_from</dt>
<dd>{{run.resumed_from.run.id}} {{run.resumed_from.iteration_str}}</dd>
{% endif %}
</dl>
<div class="snapshots">
{% for snapshot in run.snapshots %}
<div class="snapshot">
<span class="iteration">{{snapshot.iteration}}</span>
<span class="time">{{snapshot.time}}</span>
<img src="imgs/{{snapshot.id}}.jpg">
</div>
{% endfor %}
</div>
</section>
{% endfor %}
</body>
</html>

101
templates/style.css Normal file
View file

@ -0,0 +1,101 @@
:root{
font-family: Lexend, sans-serif;
font-size:10pt;
}
@page {
size: A4;
margin-top: 10mm;
margin-right: 20mm;
margin-bottom: 25mm;
margin-left: 15mm;
@bottom-center {
content: string(title, first-except);
/* text-transform: uppercase; */
}
}
@page :left{
@bottom-left {
content: counter(page);
}
}
@page :right{
@bottom-right {
content: counter(page);
}
}
@page :first{
@bottom-right{
content:none;
}
}
img{
width: 100%;
}
@media print {
@page: left {
margin-left: 35mm;
margin-right: 15mm;
}
@page: right {
margin-left: 15mm;
margin-right: 35mm;
}
/* all your book chapters in <section> elements...
you want your chapter to always start on the right page. */
section {
break-before: right;
}
h1 {
string-set: title content(text);
font-size: 8em;
margin-bottom:20px;
font-family: "Lexend Zetta";
}
.cover h1{
font-size: 4em;
}
h2{
font-weight:normal;
font-size:1.5em;
}
.tocitem::after{
content: target-counter(attr(data-ref), page) ;
margin-left: 10px;
}
.snapshot{
page-break-inside: avoid;
}
.snapshot .iteration{
float:right;
}
}
dt{
font-weight: bold;
}
table {
margin: 40px 0;
}