Consistency fix w.r.t. metrics computed during training.

This commit is contained in:
Tero Karras 2021-10-14 08:58:02 +03:00
parent 1406ab6f1c
commit 1c6608208c

View file

@ -183,10 +183,9 @@ def training_loop(
if rank == 0:
print(f'Distributing across {num_gpus} GPUs...')
for module in [G, D, G_ema, augment_pipe]:
if module is not None:
if module is not None and num_gpus > 1:
for param in misc.params_and_buffers(module):
if param.numel() > 0 and num_gpus > 1:
torch.distributed.broadcast(param, src=0)
torch.distributed.broadcast(param, src=0)
# Setup training phases.
if rank == 0:
@ -281,7 +280,7 @@ def training_loop(
# Update weights.
with torch.autograd.profiler.record_function(phase.name + '_opt'):
params = [param for param in phase.module.parameters() if param.numel() > 0 and param.grad is not None]
params = [param for param in phase.module.parameters() if param.grad is not None]
if len(params) > 0:
flat = torch.cat([param.grad.flatten() for param in params])
if num_gpus > 1:
@ -358,14 +357,16 @@ def training_loop(
snapshot_pkl = None
snapshot_data = None
if (network_snapshot_ticks is not None) and (done or cur_tick % network_snapshot_ticks == 0):
snapshot_data = dict(training_set_kwargs=dict(training_set_kwargs))
for name, module in [('G', G), ('D', D), ('G_ema', G_ema), ('augment_pipe', augment_pipe)]:
if module is not None:
snapshot_data = dict(G=G, D=D, G_ema=G_ema, augment_pipe=augment_pipe, training_set_kwargs=dict(training_set_kwargs))
for key, value in snapshot_data.items():
if isinstance(value, torch.nn.Module):
value = copy.deepcopy(value).eval().requires_grad_(False)
if num_gpus > 1:
misc.check_ddp_consistency(module, ignore_regex=r'.*\.[^.]+_(avg|ema)')
module = copy.deepcopy(module).eval().requires_grad_(False).cpu()
snapshot_data[name] = module
del module # conserve memory
misc.check_ddp_consistency(value, ignore_regex=r'.*\.[^.]+_(avg|ema)')
for param in misc.params_and_buffers(value):
torch.distributed.broadcast(param, src=0)
snapshot_data[key] = value.cpu()
del value # conserve memory
snapshot_pkl = os.path.join(run_dir, f'network-snapshot-{cur_nimg//1000:06d}.pkl')
if rank == 0:
with open(snapshot_pkl, 'wb') as f: