2021-10-13 12:00:23 +02:00
|
|
|
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2021-10-07 11:55:26 +02:00
|
|
|
#
|
|
|
|
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
|
|
# and proprietary rights in and to this software, related documentation
|
|
|
|
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
|
|
# distribution of this software and related documentation without an express
|
|
|
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
|
|
|
|
|
|
"""Tool for creating ZIP/PNG based datasets."""
|
|
|
|
|
|
|
|
import functools
|
|
|
|
import gzip
|
|
|
|
import io
|
|
|
|
import json
|
|
|
|
import os
|
|
|
|
import pickle
|
|
|
|
import re
|
|
|
|
import sys
|
|
|
|
import tarfile
|
|
|
|
import zipfile
|
|
|
|
from pathlib import Path
|
|
|
|
from typing import Callable, Optional, Tuple, Union
|
|
|
|
|
|
|
|
import click
|
|
|
|
import numpy as np
|
|
|
|
import PIL.Image
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def error(msg):
|
|
|
|
print('Error: ' + msg)
|
|
|
|
sys.exit(1)
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def parse_tuple(s: str) -> Tuple[int, int]:
|
|
|
|
'''Parse a 'M,N' or 'MxN' integer tuple.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
'4x2' returns (4,2)
|
|
|
|
'0,1' returns (0,1)
|
|
|
|
'''
|
2021-10-13 12:09:27 +02:00
|
|
|
m = re.match(r'^(\d+)[x,](\d+)$', s)
|
|
|
|
if m:
|
2021-10-07 11:55:26 +02:00
|
|
|
return (int(m.group(1)), int(m.group(2)))
|
|
|
|
raise ValueError(f'cannot parse tuple {s}')
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def maybe_min(a: int, b: Optional[int]) -> int:
|
|
|
|
if b is not None:
|
|
|
|
return min(a, b)
|
|
|
|
return a
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def file_ext(name: Union[str, Path]) -> str:
|
|
|
|
return str(name).split('.')[-1]
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def is_image_ext(fname: Union[str, Path]) -> bool:
|
|
|
|
ext = file_ext(fname).lower()
|
|
|
|
return f'.{ext}' in PIL.Image.EXTENSION # type: ignore
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def open_image_folder(source_dir, *, max_images: Optional[int]):
|
|
|
|
input_images = [str(f) for f in sorted(Path(source_dir).rglob('*')) if is_image_ext(f) and os.path.isfile(f)]
|
|
|
|
|
|
|
|
# Load labels.
|
|
|
|
labels = {}
|
|
|
|
meta_fname = os.path.join(source_dir, 'dataset.json')
|
|
|
|
if os.path.isfile(meta_fname):
|
|
|
|
with open(meta_fname, 'r') as file:
|
|
|
|
labels = json.load(file)['labels']
|
|
|
|
if labels is not None:
|
|
|
|
labels = { x[0]: x[1] for x in labels }
|
|
|
|
else:
|
|
|
|
labels = {}
|
|
|
|
|
|
|
|
max_idx = maybe_min(len(input_images), max_images)
|
|
|
|
|
|
|
|
def iterate_images():
|
|
|
|
for idx, fname in enumerate(input_images):
|
|
|
|
arch_fname = os.path.relpath(fname, source_dir)
|
|
|
|
arch_fname = arch_fname.replace('\\', '/')
|
|
|
|
img = np.array(PIL.Image.open(fname))
|
|
|
|
yield dict(img=img, label=labels.get(arch_fname))
|
|
|
|
if idx >= max_idx-1:
|
|
|
|
break
|
|
|
|
return max_idx, iterate_images()
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def open_image_zip(source, *, max_images: Optional[int]):
|
|
|
|
with zipfile.ZipFile(source, mode='r') as z:
|
|
|
|
input_images = [str(f) for f in sorted(z.namelist()) if is_image_ext(f)]
|
|
|
|
|
|
|
|
# Load labels.
|
|
|
|
labels = {}
|
|
|
|
if 'dataset.json' in z.namelist():
|
|
|
|
with z.open('dataset.json', 'r') as file:
|
|
|
|
labels = json.load(file)['labels']
|
|
|
|
if labels is not None:
|
|
|
|
labels = { x[0]: x[1] for x in labels }
|
|
|
|
else:
|
|
|
|
labels = {}
|
|
|
|
|
|
|
|
max_idx = maybe_min(len(input_images), max_images)
|
|
|
|
|
|
|
|
def iterate_images():
|
|
|
|
with zipfile.ZipFile(source, mode='r') as z:
|
|
|
|
for idx, fname in enumerate(input_images):
|
|
|
|
with z.open(fname, 'r') as file:
|
|
|
|
img = PIL.Image.open(file) # type: ignore
|
|
|
|
img = np.array(img)
|
|
|
|
yield dict(img=img, label=labels.get(fname))
|
|
|
|
if idx >= max_idx-1:
|
|
|
|
break
|
|
|
|
return max_idx, iterate_images()
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def open_lmdb(lmdb_dir: str, *, max_images: Optional[int]):
|
|
|
|
import cv2 # pip install opencv-python # pylint: disable=import-error
|
|
|
|
import lmdb # pip install lmdb # pylint: disable=import-error
|
|
|
|
|
|
|
|
with lmdb.open(lmdb_dir, readonly=True, lock=False).begin(write=False) as txn:
|
|
|
|
max_idx = maybe_min(txn.stat()['entries'], max_images)
|
|
|
|
|
|
|
|
def iterate_images():
|
|
|
|
with lmdb.open(lmdb_dir, readonly=True, lock=False).begin(write=False) as txn:
|
|
|
|
for idx, (_key, value) in enumerate(txn.cursor()):
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
img = cv2.imdecode(np.frombuffer(value, dtype=np.uint8), 1)
|
|
|
|
if img is None:
|
|
|
|
raise IOError('cv2.imdecode failed')
|
|
|
|
img = img[:, :, ::-1] # BGR => RGB
|
|
|
|
except IOError:
|
|
|
|
img = np.array(PIL.Image.open(io.BytesIO(value)))
|
|
|
|
yield dict(img=img, label=None)
|
|
|
|
if idx >= max_idx-1:
|
|
|
|
break
|
|
|
|
except:
|
|
|
|
print(sys.exc_info()[1])
|
|
|
|
|
|
|
|
return max_idx, iterate_images()
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def open_cifar10(tarball: str, *, max_images: Optional[int]):
|
|
|
|
images = []
|
|
|
|
labels = []
|
|
|
|
|
|
|
|
with tarfile.open(tarball, 'r:gz') as tar:
|
|
|
|
for batch in range(1, 6):
|
|
|
|
member = tar.getmember(f'cifar-10-batches-py/data_batch_{batch}')
|
|
|
|
with tar.extractfile(member) as file:
|
|
|
|
data = pickle.load(file, encoding='latin1')
|
|
|
|
images.append(data['data'].reshape(-1, 3, 32, 32))
|
|
|
|
labels.append(data['labels'])
|
|
|
|
|
|
|
|
images = np.concatenate(images)
|
|
|
|
labels = np.concatenate(labels)
|
|
|
|
images = images.transpose([0, 2, 3, 1]) # NCHW -> NHWC
|
|
|
|
assert images.shape == (50000, 32, 32, 3) and images.dtype == np.uint8
|
|
|
|
assert labels.shape == (50000,) and labels.dtype in [np.int32, np.int64]
|
|
|
|
assert np.min(images) == 0 and np.max(images) == 255
|
|
|
|
assert np.min(labels) == 0 and np.max(labels) == 9
|
|
|
|
|
|
|
|
max_idx = maybe_min(len(images), max_images)
|
|
|
|
|
|
|
|
def iterate_images():
|
|
|
|
for idx, img in enumerate(images):
|
|
|
|
yield dict(img=img, label=int(labels[idx]))
|
|
|
|
if idx >= max_idx-1:
|
|
|
|
break
|
|
|
|
|
|
|
|
return max_idx, iterate_images()
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def open_mnist(images_gz: str, *, max_images: Optional[int]):
|
|
|
|
labels_gz = images_gz.replace('-images-idx3-ubyte.gz', '-labels-idx1-ubyte.gz')
|
|
|
|
assert labels_gz != images_gz
|
|
|
|
images = []
|
|
|
|
labels = []
|
|
|
|
|
|
|
|
with gzip.open(images_gz, 'rb') as f:
|
|
|
|
images = np.frombuffer(f.read(), np.uint8, offset=16)
|
|
|
|
with gzip.open(labels_gz, 'rb') as f:
|
|
|
|
labels = np.frombuffer(f.read(), np.uint8, offset=8)
|
|
|
|
|
|
|
|
images = images.reshape(-1, 28, 28)
|
|
|
|
images = np.pad(images, [(0,0), (2,2), (2,2)], 'constant', constant_values=0)
|
|
|
|
assert images.shape == (60000, 32, 32) and images.dtype == np.uint8
|
|
|
|
assert labels.shape == (60000,) and labels.dtype == np.uint8
|
|
|
|
assert np.min(images) == 0 and np.max(images) == 255
|
|
|
|
assert np.min(labels) == 0 and np.max(labels) == 9
|
|
|
|
|
|
|
|
max_idx = maybe_min(len(images), max_images)
|
|
|
|
|
|
|
|
def iterate_images():
|
|
|
|
for idx, img in enumerate(images):
|
|
|
|
yield dict(img=img, label=int(labels[idx]))
|
|
|
|
if idx >= max_idx-1:
|
|
|
|
break
|
|
|
|
|
|
|
|
return max_idx, iterate_images()
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def make_transform(
|
|
|
|
transform: Optional[str],
|
|
|
|
output_width: Optional[int],
|
|
|
|
output_height: Optional[int]
|
|
|
|
) -> Callable[[np.ndarray], Optional[np.ndarray]]:
|
|
|
|
def scale(width, height, img):
|
|
|
|
w = img.shape[1]
|
|
|
|
h = img.shape[0]
|
|
|
|
if width == w and height == h:
|
|
|
|
return img
|
|
|
|
img = PIL.Image.fromarray(img)
|
|
|
|
ww = width if width is not None else w
|
|
|
|
hh = height if height is not None else h
|
|
|
|
img = img.resize((ww, hh), PIL.Image.LANCZOS)
|
|
|
|
return np.array(img)
|
|
|
|
|
|
|
|
def center_crop(width, height, img):
|
|
|
|
crop = np.min(img.shape[:2])
|
|
|
|
img = img[(img.shape[0] - crop) // 2 : (img.shape[0] + crop) // 2, (img.shape[1] - crop) // 2 : (img.shape[1] + crop) // 2]
|
|
|
|
img = PIL.Image.fromarray(img, 'RGB')
|
|
|
|
img = img.resize((width, height), PIL.Image.LANCZOS)
|
|
|
|
return np.array(img)
|
|
|
|
|
|
|
|
def center_crop_wide(width, height, img):
|
|
|
|
ch = int(np.round(width * img.shape[0] / img.shape[1]))
|
|
|
|
if img.shape[1] < width or ch < height:
|
|
|
|
return None
|
|
|
|
|
|
|
|
img = img[(img.shape[0] - ch) // 2 : (img.shape[0] + ch) // 2]
|
|
|
|
img = PIL.Image.fromarray(img, 'RGB')
|
|
|
|
img = img.resize((width, height), PIL.Image.LANCZOS)
|
|
|
|
img = np.array(img)
|
|
|
|
|
|
|
|
canvas = np.zeros([width, width, 3], dtype=np.uint8)
|
|
|
|
canvas[(width - height) // 2 : (width + height) // 2, :] = img
|
|
|
|
return canvas
|
|
|
|
|
|
|
|
if transform is None:
|
|
|
|
return functools.partial(scale, output_width, output_height)
|
|
|
|
if transform == 'center-crop':
|
|
|
|
if (output_width is None) or (output_height is None):
|
|
|
|
error ('must specify --resolution=WxH when using ' + transform + 'transform')
|
|
|
|
return functools.partial(center_crop, output_width, output_height)
|
|
|
|
if transform == 'center-crop-wide':
|
|
|
|
if (output_width is None) or (output_height is None):
|
|
|
|
error ('must specify --resolution=WxH when using ' + transform + ' transform')
|
|
|
|
return functools.partial(center_crop_wide, output_width, output_height)
|
|
|
|
assert False, 'unknown transform'
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def open_dataset(source, *, max_images: Optional[int]):
|
|
|
|
if os.path.isdir(source):
|
|
|
|
if source.rstrip('/').endswith('_lmdb'):
|
|
|
|
return open_lmdb(source, max_images=max_images)
|
|
|
|
else:
|
|
|
|
return open_image_folder(source, max_images=max_images)
|
|
|
|
elif os.path.isfile(source):
|
|
|
|
if os.path.basename(source) == 'cifar-10-python.tar.gz':
|
|
|
|
return open_cifar10(source, max_images=max_images)
|
|
|
|
elif os.path.basename(source) == 'train-images-idx3-ubyte.gz':
|
|
|
|
return open_mnist(source, max_images=max_images)
|
|
|
|
elif file_ext(source) == 'zip':
|
|
|
|
return open_image_zip(source, max_images=max_images)
|
|
|
|
else:
|
|
|
|
assert False, 'unknown archive type'
|
|
|
|
else:
|
|
|
|
error(f'Missing input file or directory: {source}')
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def open_dest(dest: str) -> Tuple[str, Callable[[str, Union[bytes, str]], None], Callable[[], None]]:
|
|
|
|
dest_ext = file_ext(dest)
|
|
|
|
|
|
|
|
if dest_ext == 'zip':
|
|
|
|
if os.path.dirname(dest) != '':
|
|
|
|
os.makedirs(os.path.dirname(dest), exist_ok=True)
|
|
|
|
zf = zipfile.ZipFile(file=dest, mode='w', compression=zipfile.ZIP_STORED)
|
|
|
|
def zip_write_bytes(fname: str, data: Union[bytes, str]):
|
|
|
|
zf.writestr(fname, data)
|
|
|
|
return '', zip_write_bytes, zf.close
|
|
|
|
else:
|
|
|
|
# If the output folder already exists, check that is is
|
|
|
|
# empty.
|
|
|
|
#
|
|
|
|
# Note: creating the output directory is not strictly
|
|
|
|
# necessary as folder_write_bytes() also mkdirs, but it's better
|
|
|
|
# to give an error message earlier in case the dest folder
|
|
|
|
# somehow cannot be created.
|
|
|
|
if os.path.isdir(dest) and len(os.listdir(dest)) != 0:
|
|
|
|
error('--dest folder must be empty')
|
|
|
|
os.makedirs(dest, exist_ok=True)
|
|
|
|
|
|
|
|
def folder_write_bytes(fname: str, data: Union[bytes, str]):
|
|
|
|
os.makedirs(os.path.dirname(fname), exist_ok=True)
|
|
|
|
with open(fname, 'wb') as fout:
|
|
|
|
if isinstance(data, str):
|
|
|
|
data = data.encode('utf8')
|
|
|
|
fout.write(data)
|
|
|
|
return dest, folder_write_bytes, lambda: None
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
@click.command()
|
|
|
|
@click.pass_context
|
|
|
|
@click.option('--source', help='Directory or archive name for input dataset', required=True, metavar='PATH')
|
|
|
|
@click.option('--dest', help='Output directory or archive name for output dataset', required=True, metavar='PATH')
|
|
|
|
@click.option('--max-images', help='Output only up to `max-images` images', type=int, default=None)
|
|
|
|
@click.option('--transform', help='Input crop/resize mode', type=click.Choice(['center-crop', 'center-crop-wide']))
|
|
|
|
@click.option('--resolution', help='Output resolution (e.g., \'512x512\')', metavar='WxH', type=parse_tuple)
|
|
|
|
def convert_dataset(
|
|
|
|
ctx: click.Context,
|
|
|
|
source: str,
|
|
|
|
dest: str,
|
|
|
|
max_images: Optional[int],
|
|
|
|
transform: Optional[str],
|
|
|
|
resolution: Optional[Tuple[int, int]]
|
|
|
|
):
|
|
|
|
"""Convert an image dataset into a dataset archive usable with StyleGAN2 ADA PyTorch.
|
|
|
|
|
|
|
|
The input dataset format is guessed from the --source argument:
|
|
|
|
|
|
|
|
\b
|
|
|
|
--source *_lmdb/ Load LSUN dataset
|
|
|
|
--source cifar-10-python.tar.gz Load CIFAR-10 dataset
|
|
|
|
--source train-images-idx3-ubyte.gz Load MNIST dataset
|
|
|
|
--source path/ Recursively load all images from path/
|
|
|
|
--source dataset.zip Recursively load all images from dataset.zip
|
|
|
|
|
|
|
|
Specifying the output format and path:
|
|
|
|
|
|
|
|
\b
|
|
|
|
--dest /path/to/dir Save output files under /path/to/dir
|
|
|
|
--dest /path/to/dataset.zip Save output files into /path/to/dataset.zip
|
|
|
|
|
|
|
|
The output dataset format can be either an image folder or an uncompressed zip archive.
|
|
|
|
Zip archives makes it easier to move datasets around file servers and clusters, and may
|
|
|
|
offer better training performance on network file systems.
|
|
|
|
|
|
|
|
Images within the dataset archive will be stored as uncompressed PNG.
|
|
|
|
Uncompresed PNGs can be efficiently decoded in the training loop.
|
|
|
|
|
|
|
|
Class labels are stored in a file called 'dataset.json' that is stored at the
|
|
|
|
dataset root folder. This file has the following structure:
|
|
|
|
|
|
|
|
\b
|
|
|
|
{
|
|
|
|
"labels": [
|
|
|
|
["00000/img00000000.png",6],
|
|
|
|
["00000/img00000001.png",9],
|
|
|
|
... repeated for every image in the datase
|
|
|
|
["00049/img00049999.png",1]
|
|
|
|
]
|
|
|
|
}
|
|
|
|
|
|
|
|
If the 'dataset.json' file cannot be found, the dataset is interpreted as
|
|
|
|
not containing class labels.
|
|
|
|
|
|
|
|
Image scale/crop and resolution requirements:
|
|
|
|
|
|
|
|
Output images must be square-shaped and they must all have the same power-of-two
|
|
|
|
dimensions.
|
|
|
|
|
|
|
|
To scale arbitrary input image size to a specific width and height, use the
|
|
|
|
--resolution option. Output resolution will be either the original
|
|
|
|
input resolution (if resolution was not specified) or the one specified with
|
|
|
|
--resolution option.
|
|
|
|
|
|
|
|
Use the --transform=center-crop or --transform=center-crop-wide options to apply a
|
|
|
|
center crop transform on the input image. These options should be used with the
|
|
|
|
--resolution option. For example:
|
|
|
|
|
|
|
|
\b
|
|
|
|
python dataset_tool.py --source LSUN/raw/cat_lmdb --dest /tmp/lsun_cat \\
|
|
|
|
--transform=center-crop-wide --resolution=512x384
|
|
|
|
"""
|
|
|
|
|
|
|
|
PIL.Image.init() # type: ignore
|
|
|
|
|
|
|
|
if dest == '':
|
|
|
|
ctx.fail('--dest output filename or directory must not be an empty string')
|
|
|
|
|
|
|
|
num_files, input_iter = open_dataset(source, max_images=max_images)
|
|
|
|
archive_root_dir, save_bytes, close_dest = open_dest(dest)
|
|
|
|
|
|
|
|
if resolution is None: resolution = (None, None)
|
|
|
|
transform_image = make_transform(transform, *resolution)
|
|
|
|
|
|
|
|
dataset_attrs = None
|
|
|
|
|
|
|
|
labels = []
|
|
|
|
for idx, image in tqdm(enumerate(input_iter), total=num_files):
|
|
|
|
idx_str = f'{idx:08d}'
|
|
|
|
archive_fname = f'{idx_str[:5]}/img{idx_str}.png'
|
|
|
|
|
|
|
|
# Apply crop and resize.
|
|
|
|
img = transform_image(image['img'])
|
|
|
|
|
|
|
|
# Transform may drop images.
|
|
|
|
if img is None:
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Error check to require uniform image attributes across
|
|
|
|
# the whole dataset.
|
|
|
|
channels = img.shape[2] if img.ndim == 3 else 1
|
|
|
|
cur_image_attrs = {
|
|
|
|
'width': img.shape[1],
|
|
|
|
'height': img.shape[0],
|
|
|
|
'channels': channels
|
|
|
|
}
|
|
|
|
if dataset_attrs is None:
|
|
|
|
dataset_attrs = cur_image_attrs
|
|
|
|
width = dataset_attrs['width']
|
|
|
|
height = dataset_attrs['height']
|
|
|
|
if width != height:
|
|
|
|
error(f'Image dimensions after scale and crop are required to be square. Got {width}x{height}')
|
|
|
|
if dataset_attrs['channels'] not in [1, 3]:
|
|
|
|
error('Input images must be stored as RGB or grayscale')
|
|
|
|
if width != 2 ** int(np.floor(np.log2(width))):
|
|
|
|
error('Image width/height after scale and crop are required to be power-of-two')
|
|
|
|
elif dataset_attrs != cur_image_attrs:
|
|
|
|
err = [f' dataset {k}/cur image {k}: {dataset_attrs[k]}/{cur_image_attrs[k]}' for k in dataset_attrs.keys()] # pylint: disable=unsubscriptable-object
|
|
|
|
error(f'Image {archive_fname} attributes must be equal across all images of the dataset. Got:\n' + '\n'.join(err))
|
|
|
|
|
|
|
|
# Save the image as an uncompressed PNG.
|
|
|
|
img = PIL.Image.fromarray(img, { 1: 'L', 3: 'RGB' }[channels])
|
|
|
|
image_bits = io.BytesIO()
|
|
|
|
img.save(image_bits, format='png', compress_level=0, optimize=False)
|
|
|
|
save_bytes(os.path.join(archive_root_dir, archive_fname), image_bits.getbuffer())
|
|
|
|
labels.append([archive_fname, image['label']] if image['label'] is not None else None)
|
|
|
|
|
|
|
|
metadata = {
|
|
|
|
'labels': labels if all(x is not None for x in labels) else None
|
|
|
|
}
|
|
|
|
save_bytes(os.path.join(archive_root_dir, 'dataset.json'), json.dumps(metadata))
|
|
|
|
close_dest()
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
convert_dataset() # pylint: disable=no-value-for-parameter
|