2021-10-13 12:00:23 +02:00
|
|
|
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2021-10-07 11:55:26 +02:00
|
|
|
#
|
|
|
|
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
|
|
# and proprietary rights in and to this software, related documentation
|
|
|
|
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
|
|
# distribution of this software and related documentation without an express
|
|
|
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
|
|
|
|
|
|
"""Frechet Inception Distance (FID) from the paper
|
|
|
|
"GANs trained by a two time-scale update rule converge to a local Nash
|
|
|
|
equilibrium". Matches the original implementation by Heusel et al. at
|
|
|
|
https://github.com/bioinf-jku/TTUR/blob/master/fid.py"""
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import scipy.linalg
|
|
|
|
from . import metric_utils
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def compute_fid(opts, max_real, num_gen):
|
|
|
|
# Direct TorchScript translation of http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz
|
|
|
|
detector_url = 'https://api.ngc.nvidia.com/v2/models/nvidia/research/stylegan3/versions/1/files/metrics/inception-2015-12-05.pkl'
|
|
|
|
detector_kwargs = dict(return_features=True) # Return raw features before the softmax layer.
|
|
|
|
|
|
|
|
mu_real, sigma_real = metric_utils.compute_feature_stats_for_dataset(
|
|
|
|
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs,
|
|
|
|
rel_lo=0, rel_hi=0, capture_mean_cov=True, max_items=max_real).get_mean_cov()
|
|
|
|
|
|
|
|
mu_gen, sigma_gen = metric_utils.compute_feature_stats_for_generator(
|
|
|
|
opts=opts, detector_url=detector_url, detector_kwargs=detector_kwargs,
|
|
|
|
rel_lo=0, rel_hi=1, capture_mean_cov=True, max_items=num_gen).get_mean_cov()
|
|
|
|
|
|
|
|
if opts.rank != 0:
|
|
|
|
return float('nan')
|
|
|
|
|
|
|
|
m = np.square(mu_gen - mu_real).sum()
|
|
|
|
s, _ = scipy.linalg.sqrtm(np.dot(sigma_gen, sigma_real), disp=False) # pylint: disable=no-member
|
|
|
|
fid = np.real(m + np.trace(sigma_gen + sigma_real - s * 2))
|
|
|
|
return float(fid)
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|