400 lines
18 KiB
Python
400 lines
18 KiB
Python
|
# Modified StyleGAN2 Projector with CLIP, addl. losses, kmeans, etc.
|
||
|
# by Peter Baylies, 2021 -- @pbaylies on Twitter
|
||
|
|
||
|
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
|
||
|
#
|
||
|
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
||
|
# and proprietary rights in and to this software, related documentation
|
||
|
# and any modifications thereto. Any use, reproduction, disclosure or
|
||
|
# distribution of this software and related documentation without an express
|
||
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
||
|
|
||
|
"""Project given image to the latent space of pretrained network pickle."""
|
||
|
|
||
|
import copy
|
||
|
import os
|
||
|
from time import perf_counter
|
||
|
|
||
|
import click
|
||
|
import imageio
|
||
|
import numpy as np
|
||
|
import PIL.Image
|
||
|
from PIL import ImageFilter
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
|
||
|
import dnnlib
|
||
|
import legacy
|
||
|
|
||
|
image_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).cuda()
|
||
|
image_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).cuda()
|
||
|
|
||
|
def score_images(G, model, text, latents, device, label_class = 0, batch_size = 8):
|
||
|
scores = []
|
||
|
all_images = []
|
||
|
for i in range(latents.shape[0]//batch_size):
|
||
|
images = G.synthesis(torch.tensor(latents[i*batch_size:(i+1)*batch_size,:,:], dtype=torch.float32, device=device), noise_mode='const')
|
||
|
with torch.no_grad():
|
||
|
image_input = (torch.clamp(images, -1, 1) + 1) * 0.5
|
||
|
image_input = F.interpolate(image_input, size=(256, 256), mode='area')
|
||
|
image_input = image_input[:, :, 16:240, 16:240] # 256 -> 224, center crop
|
||
|
image_input -= image_mean[None, :, None, None]
|
||
|
image_input /= image_std[None, :, None, None]
|
||
|
score = model(image_input, text)[0]
|
||
|
scores.append(score.cpu().numpy())
|
||
|
all_images.append(images.cpu().numpy())
|
||
|
|
||
|
scores = np.array(scores)
|
||
|
scores = scores.reshape(-1, *scores.shape[2:]).squeeze()
|
||
|
scores = 1 - scores / np.linalg.norm(scores)
|
||
|
all_images = np.array(all_images)
|
||
|
all_images = all_images.reshape(-1, *all_images.shape[2:])
|
||
|
return scores, all_images
|
||
|
|
||
|
def project(
|
||
|
G,
|
||
|
target_image: torch.Tensor, # [C,H,W] and dynamic range [0,255], W & H must match G output resolution
|
||
|
target_text,
|
||
|
*,
|
||
|
num_steps = 300,
|
||
|
w_avg_samples = 8192,
|
||
|
initial_learning_rate = 0.02,
|
||
|
initial_latent = None,
|
||
|
initial_noise_factor = 0.01,
|
||
|
lr_rampdown_length = 0.10,
|
||
|
lr_rampup_length = 0.5,
|
||
|
noise_ramp_length = 0.75,
|
||
|
latent_range = 2.0,
|
||
|
max_noise = 0.5,
|
||
|
min_threshold = 0.6,
|
||
|
use_vgg = True,
|
||
|
use_clip = True,
|
||
|
use_pixel = True,
|
||
|
use_penalty = True,
|
||
|
use_center = True,
|
||
|
regularize_noise_weight = 1e5,
|
||
|
kmeans = True,
|
||
|
kmeans_clusters = 64,
|
||
|
verbose = False,
|
||
|
device: torch.device
|
||
|
):
|
||
|
if target_image is not None:
|
||
|
assert target_image.shape == (G.img_channels, G.img_resolution, G.img_resolution)
|
||
|
else:
|
||
|
use_vgg = False
|
||
|
use_pixel = False
|
||
|
|
||
|
# reduce errors unless using clip
|
||
|
if use_clip:
|
||
|
import clip
|
||
|
|
||
|
def logprint(*args):
|
||
|
if verbose:
|
||
|
print(*args)
|
||
|
|
||
|
G = copy.deepcopy(G).eval().requires_grad_(False).to(device) # type: ignore
|
||
|
|
||
|
# Compute w stats.
|
||
|
logprint(f'Computing W midpoint and stddev using {w_avg_samples} samples...')
|
||
|
z_samples = np.random.RandomState(123).randn(w_avg_samples, G.z_dim)
|
||
|
labels = None
|
||
|
if (G.mapping.c_dim):
|
||
|
labels = torch.from_numpy(0.5*np.random.RandomState(123).randn(w_avg_samples, G.mapping.c_dim)).to(device)
|
||
|
w_samples = G.mapping(torch.from_numpy(z_samples).to(device), labels) # [N, L, C]
|
||
|
w_samples = w_samples.cpu().numpy().astype(np.float32) # [N, L, C]
|
||
|
w_samples_1d = w_samples[:, :1, :].astype(np.float32)
|
||
|
|
||
|
w_avg = np.mean(w_samples, axis=0, keepdims=True) # [1, L, C]
|
||
|
w_std = (np.sum((w_samples - w_avg) ** 2) / w_avg_samples) ** 0.5
|
||
|
|
||
|
kmeans_latents = None
|
||
|
if initial_latent is not None:
|
||
|
w_avg = initial_latent
|
||
|
else:
|
||
|
if kmeans and use_clip and target_text is not None:
|
||
|
from kmeans_pytorch import kmeans
|
||
|
# data
|
||
|
data_size, dims, num_clusters = w_avg_samples, G.z_dim, kmeans_clusters
|
||
|
x = w_samples_1d
|
||
|
x = torch.from_numpy(x)
|
||
|
|
||
|
# kmeans
|
||
|
logprint(f'Performing kmeans clustering using {w_avg_samples} latents into {kmeans_clusters} clusters...')
|
||
|
cluster_ids_x, cluster_centers = kmeans(
|
||
|
X=x, num_clusters=num_clusters, distance='euclidean', device=device
|
||
|
)
|
||
|
#logprint(f'\nGenerating images from kmeans latents...')
|
||
|
kmeans_latents = torch.tensor(cluster_centers, dtype=torch.float32, device=device, requires_grad=True)
|
||
|
|
||
|
# Setup noise inputs.
|
||
|
noise_bufs = { name: buf for (name, buf) in G.synthesis.named_buffers() if 'noise_const' in name }
|
||
|
|
||
|
# Load VGG16 feature detector.
|
||
|
if use_vgg:
|
||
|
url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt'
|
||
|
with dnnlib.util.open_url(url) as f:
|
||
|
vgg16 = torch.jit.load(f).eval().to(device)
|
||
|
|
||
|
# Load CLIP
|
||
|
if use_clip:
|
||
|
model, transform = clip.load("ViT-B/32", device=device)
|
||
|
|
||
|
# Features for target image.
|
||
|
if target_image is not None:
|
||
|
target_images = target_image.unsqueeze(0).to(device).to(torch.float32)
|
||
|
small_target = F.interpolate(target_images, size=(64, 64), mode='area')
|
||
|
if use_center:
|
||
|
center_target = F.interpolate(target_images, size=(448, 448), mode='area')[:, :, 112:336, 112:336]
|
||
|
target_images = F.interpolate(target_images, size=(256, 256), mode='area')
|
||
|
target_images = target_images[:, :, 16:240, 16:240] # 256 -> 224, center crop
|
||
|
|
||
|
if use_vgg:
|
||
|
vgg_target_features = vgg16(target_images, resize_images=False, return_lpips=True)
|
||
|
if use_center:
|
||
|
vgg_target_center = vgg16(center_target, resize_images=False, return_lpips=True)
|
||
|
|
||
|
if use_clip:
|
||
|
if target_image is not None:
|
||
|
with torch.no_grad():
|
||
|
clip_target_features = model.encode_image(((target_images / 255.0) - image_mean[None, :, None, None]) / image_std[None, :, None, None]).float()
|
||
|
if use_center:
|
||
|
clip_target_center = model.encode_image(((center_target / 255.0) - image_mean[None, :, None, None]) / image_std[None, :, None, None]).float()
|
||
|
|
||
|
if kmeans_latents is not None and use_clip and target_text is not None:
|
||
|
scores, kmeans_images = score_images(G, model, target_text, kmeans_latents.repeat([1, G.mapping.num_ws, 1]), device=device)
|
||
|
ind = np.argpartition(scores, 4)[:4]
|
||
|
w_avg = torch.median(kmeans_latents[ind],dim=0,keepdim=True)[0].repeat([1, G.mapping.num_ws, 1])
|
||
|
|
||
|
w_opt = torch.tensor(w_avg, dtype=torch.float32, device=device, requires_grad=True) # pylint: disable=not-callable
|
||
|
w_avg_tensor = w_opt.clone()
|
||
|
w_out = torch.zeros([num_steps] + list(w_opt.shape[1:]), dtype=torch.float32, device=device)
|
||
|
optimizer = torch.optim.AdamW([w_opt] + list(noise_bufs.values()), betas=(0.9, 0.999), lr=initial_learning_rate)
|
||
|
|
||
|
# Init noise.
|
||
|
for buf in noise_bufs.values():
|
||
|
buf[:] = torch.randn_like(buf)
|
||
|
buf.requires_grad = True
|
||
|
|
||
|
for step in range(num_steps):
|
||
|
# Learning rate schedule.
|
||
|
t = step / num_steps
|
||
|
w_noise_scale = max_noise * w_std * initial_noise_factor * max(0.0, 1.0 - t / noise_ramp_length) ** 2
|
||
|
lr_ramp = min(1.0, (1.0 - t) / lr_rampdown_length)
|
||
|
lr_ramp = 0.5 - 0.5 * np.cos(lr_ramp * np.pi)
|
||
|
lr_ramp = lr_ramp * min(1.0, t / lr_rampup_length)
|
||
|
lr = initial_learning_rate * lr_ramp
|
||
|
for param_group in optimizer.param_groups:
|
||
|
param_group['lr'] = lr
|
||
|
|
||
|
# Synth images from opt_w.
|
||
|
w_noise = torch.randn_like(w_opt) * w_noise_scale
|
||
|
ws = w_opt + w_noise
|
||
|
synth_images = G.synthesis(torch.clamp(ws,-latent_range,latent_range), noise_mode='const')
|
||
|
|
||
|
# Downsample image to 256x256 if it's larger than that. CLIP was built for 224x224 images.
|
||
|
synth_images = (torch.clamp(synth_images, -1, 1) + 1) * (255/2)
|
||
|
small_synth = F.interpolate(synth_images, size=(64, 64), mode='area')
|
||
|
if use_center:
|
||
|
center_synth = F.interpolate(synth_images, size=(448, 448), mode='area')[:, :, 112:336, 112:336]
|
||
|
synth_images = F.interpolate(synth_images, size=(256, 256), mode='area')
|
||
|
|
||
|
# Features for synth images.
|
||
|
synth_images = synth_images[:, :, 16:240, 16:240] # 256 -> 224, center crop
|
||
|
|
||
|
dist = 0
|
||
|
|
||
|
if use_vgg:
|
||
|
vgg_synth_features = vgg16(synth_images, resize_images=False, return_lpips=True)
|
||
|
vgg_dist = (vgg_target_features - vgg_synth_features).square().sum()
|
||
|
if use_center:
|
||
|
vgg_synth_center = vgg16(center_synth, resize_images=False, return_lpips=True)
|
||
|
vgg_dist += (vgg_target_center - vgg_synth_center).square().sum()
|
||
|
vgg_dist *= 6
|
||
|
dist += F.relu(vgg_dist*vgg_dist - min_threshold)
|
||
|
|
||
|
if use_clip:
|
||
|
clip_synth_image = ((synth_images / 255.0) - image_mean[None, :, None, None]) / image_std[None, :, None, None]
|
||
|
clip_synth_features = model.encode_image(clip_synth_image).float()
|
||
|
adj_center = 2.0
|
||
|
|
||
|
if use_center:
|
||
|
clip_cynth_center_image = ((center_synth / 255.0) - image_mean[None, :, None, None]) / image_std[None, :, None, None]
|
||
|
adj_center = 1.0
|
||
|
clip_synth_center = model.encode_image(clip_cynth_center_image).float()
|
||
|
|
||
|
if target_image is not None:
|
||
|
clip_dist = (clip_target_features - clip_synth_features).square().sum()
|
||
|
if use_center:
|
||
|
clip_dist += (clip_target_center - clip_synth_center).square().sum()
|
||
|
dist += F.relu(0.5 + adj_center*clip_dist - min_threshold)
|
||
|
|
||
|
if target_text is not None:
|
||
|
clip_text = 1 - model(clip_synth_image, target_text)[0].sum() / 100
|
||
|
if use_center:
|
||
|
clip_text += 1 - model(clip_cynth_center_image, target_text)[0].sum() / 100
|
||
|
dist += 2*F.relu(adj_center*clip_text*clip_text - min_threshold / adj_center)
|
||
|
|
||
|
if use_pixel:
|
||
|
pixel_dist = (target_images - synth_images).abs().sum() / 2000000.0
|
||
|
if use_center:
|
||
|
pixel_dist += (center_target - center_synth).abs().sum() / 2000000.0
|
||
|
pixel_dist += (small_target - small_synth).square().sum() / 800000.0
|
||
|
pixel_dist /= 4
|
||
|
dist += F.relu(lr_ramp * pixel_dist - min_threshold)
|
||
|
|
||
|
if use_penalty:
|
||
|
l1_penalty = (w_opt - w_avg_tensor).abs().sum() / 5000.0
|
||
|
dist += F.relu(lr_ramp * l1_penalty - min_threshold)
|
||
|
|
||
|
# Noise regularization.
|
||
|
reg_loss = 0.0
|
||
|
for v in noise_bufs.values():
|
||
|
noise = v[None,None,:,:] # must be [1,1,H,W] for F.avg_pool2d()
|
||
|
while True:
|
||
|
reg_loss += (noise*torch.roll(noise, shifts=1, dims=3)).mean()**2
|
||
|
reg_loss += (noise*torch.roll(noise, shifts=1, dims=2)).mean()**2
|
||
|
if noise.shape[2] <= 8:
|
||
|
break
|
||
|
noise = F.avg_pool2d(noise, kernel_size=2)
|
||
|
#print(vgg_dist, clip_dist, pixel_dist, l1_penalty, reg_loss * regularize_noise_weight)
|
||
|
loss = dist + reg_loss * regularize_noise_weight
|
||
|
|
||
|
# Step
|
||
|
optimizer.zero_grad(set_to_none=True)
|
||
|
loss.backward()
|
||
|
optimizer.step()
|
||
|
logprint(f'step {step+1:>4d}/{num_steps}: dist {dist:<4.2f} loss {float(loss):<5.2f}')
|
||
|
with torch.no_grad():
|
||
|
torch.clamp(w_opt,-latent_range,latent_range,out=w_opt)
|
||
|
# Save projected W for each optimization step.
|
||
|
w_out[step] = w_opt.detach()[0]
|
||
|
# Normalize noise.
|
||
|
with torch.no_grad():
|
||
|
for buf in noise_bufs.values():
|
||
|
buf -= buf.mean()
|
||
|
buf *= buf.square().mean().rsqrt()
|
||
|
|
||
|
return w_out
|
||
|
|
||
|
#----------------------------------------------------------------------------
|
||
|
|
||
|
@click.command()
|
||
|
@click.option('--network', 'network_pkl', help='Network pickle filename', required=True)
|
||
|
@click.option('--target-image', 'target_fname', help='Target image file to project to', required=False, metavar='FILE', default=None)
|
||
|
@click.option('--target-text', help='Target text to project to', required=False, default=None)
|
||
|
@click.option('--initial-latent', help='Initial latent', default=None)
|
||
|
@click.option('--lr', help='Learning rate', type=float, default=0.1, show_default=True)
|
||
|
@click.option('--num-steps', help='Number of optimization steps', type=int, default=1000, show_default=True)
|
||
|
@click.option('--seed', help='Random seed', type=int, default=303, show_default=True)
|
||
|
@click.option('--save-video', help='Save an mp4 video of optimization progress', type=bool, default=True, show_default=True)
|
||
|
@click.option('--outdir', help='Where to save the output images', required=True, metavar='DIR')
|
||
|
@click.option('--use-vgg', help='Use VGG16 in the loss', type=bool, default=True, show_default=True)
|
||
|
@click.option('--use-clip', help='Use CLIP in the loss', type=bool, default=True, show_default=True)
|
||
|
@click.option('--use-pixel', help='Use L1/L2 distance on pixels in the loss', type=bool, default=True, show_default=True)
|
||
|
@click.option('--use-penalty', help='Use a penalty on latent values distance from the mean in the loss', type=bool, default=True, show_default=True)
|
||
|
@click.option('--use-center', help='Optimize against an additional center image crop', type=bool, default=True, show_default=True)
|
||
|
@click.option('--use-kmeans', help='Perform kmeans clustering for selecting initial latents', type=bool, default=True, show_default=True)
|
||
|
def run_projection(
|
||
|
network_pkl: str,
|
||
|
target_fname: str,
|
||
|
target_text: str,
|
||
|
initial_latent: str,
|
||
|
outdir: str,
|
||
|
save_video: bool,
|
||
|
seed: int,
|
||
|
lr: float,
|
||
|
num_steps: int,
|
||
|
use_vgg: bool,
|
||
|
use_clip: bool,
|
||
|
use_pixel: bool,
|
||
|
use_penalty: bool,
|
||
|
use_center: bool,
|
||
|
use_kmeans: bool,
|
||
|
):
|
||
|
"""Project given image to the latent space of pretrained network pickle.
|
||
|
|
||
|
Examples:
|
||
|
|
||
|
\b
|
||
|
python projector.py --outdir=out --target=~/mytargetimg.png \\
|
||
|
--network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl
|
||
|
"""
|
||
|
np.random.seed(seed)
|
||
|
torch.manual_seed(seed)
|
||
|
|
||
|
# Load networks.
|
||
|
print('Loading networks from "%s"...' % network_pkl)
|
||
|
device = torch.device('cuda')
|
||
|
with dnnlib.util.open_url(network_pkl) as fp:
|
||
|
G = legacy.load_network_pkl(fp)['G_ema'].requires_grad_(False).to(device) # type: ignore
|
||
|
|
||
|
# Load target image.
|
||
|
target_image = None
|
||
|
if target_fname:
|
||
|
target_pil = PIL.Image.open(target_fname).convert('RGB').filter(ImageFilter.SHARPEN)
|
||
|
|
||
|
w, h = target_pil.size
|
||
|
s = min(w, h)
|
||
|
target_pil = target_pil.crop(((w - s) // 2, (h - s) // 2, (w + s) // 2, (h + s) // 2))
|
||
|
target_pil = target_pil.resize((G.img_resolution, G.img_resolution), PIL.Image.LANCZOS)
|
||
|
target_uint8 = np.array(target_pil, dtype=np.uint8)
|
||
|
target_image = torch.tensor(target_uint8.transpose([2, 0, 1]), device=device)
|
||
|
|
||
|
if target_text:
|
||
|
target_text = torch.cat([clip.tokenize(target_text)]).to(device)
|
||
|
|
||
|
if initial_latent is not None:
|
||
|
initial_latent = np.load(initial_latent)
|
||
|
initial_latent = initial_latent[initial_latent.files[0]]
|
||
|
|
||
|
# Optimize projection.
|
||
|
start_time = perf_counter()
|
||
|
projected_w_steps = project(
|
||
|
G,
|
||
|
target_image=target_image,
|
||
|
target_text=target_text,
|
||
|
initial_latent=initial_latent,
|
||
|
initial_learning_rate=lr,
|
||
|
num_steps=num_steps,
|
||
|
use_vgg=use_vgg,
|
||
|
use_clip=use_clip,
|
||
|
use_pixel=use_pixel,
|
||
|
use_penalty=use_penalty,
|
||
|
use_center=use_center,
|
||
|
kmeans=use_kmeans,
|
||
|
device=device,
|
||
|
verbose=True
|
||
|
)
|
||
|
print (f'Elapsed: {(perf_counter()-start_time):.1f} s')
|
||
|
|
||
|
os.makedirs(outdir, exist_ok=True)
|
||
|
# Save final projected frame and W vector.
|
||
|
if target_fname:
|
||
|
target_pil.save(f'{outdir}/target.png')
|
||
|
projected_w = projected_w_steps[-1]
|
||
|
synth_image = G.synthesis(projected_w.unsqueeze(0), noise_mode='const')
|
||
|
synth_image = (synth_image + 1) * (255/2)
|
||
|
synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
|
||
|
PIL.Image.fromarray(synth_image, 'RGB').save(f'{outdir}/proj.png')
|
||
|
np.savez(f'{outdir}/projected_w.npz', w=projected_w.unsqueeze(0).cpu().numpy())
|
||
|
|
||
|
# Render debug output: optional video and projected image and W vector.
|
||
|
if save_video:
|
||
|
video = imageio.get_writer(f'{outdir}/proj.mp4', mode='I', fps=10, codec='libx264', bitrate='16M')
|
||
|
print (f'Saving optimization progress video "{outdir}/proj.mp4"')
|
||
|
for projected_w in projected_w_steps:
|
||
|
synth_image = G.synthesis(projected_w.unsqueeze(0), noise_mode='const')
|
||
|
synth_image = (synth_image + 1) * (255/2)
|
||
|
synth_image = synth_image.permute(0, 2, 3, 1).clamp(0, 255).to(torch.uint8)[0].cpu().numpy()
|
||
|
if target_fname:
|
||
|
video.append_data(np.concatenate([target_uint8, synth_image], axis=1))
|
||
|
else:
|
||
|
video.append_data(synth_image)
|
||
|
video.close()
|
||
|
|
||
|
#----------------------------------------------------------------------------
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
run_projection() # pylint: disable=no-value-for-parameter
|
||
|
|
||
|
#----------------------------------------------------------------------------
|