2021-10-13 12:00:23 +02:00
|
|
|
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2021-10-07 11:55:26 +02:00
|
|
|
#
|
|
|
|
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
|
|
# and proprietary rights in and to this software, related documentation
|
|
|
|
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
|
|
# distribution of this software and related documentation without an express
|
|
|
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
|
|
|
|
|
|
"""Custom PyTorch ops for efficient bias and activation."""
|
|
|
|
|
|
|
|
import os
|
|
|
|
import numpy as np
|
|
|
|
import torch
|
|
|
|
import dnnlib
|
|
|
|
|
|
|
|
from .. import custom_ops
|
|
|
|
from .. import misc
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
activation_funcs = {
|
|
|
|
'linear': dnnlib.EasyDict(func=lambda x, **_: x, def_alpha=0, def_gain=1, cuda_idx=1, ref='', has_2nd_grad=False),
|
|
|
|
'relu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.relu(x), def_alpha=0, def_gain=np.sqrt(2), cuda_idx=2, ref='y', has_2nd_grad=False),
|
|
|
|
'lrelu': dnnlib.EasyDict(func=lambda x, alpha, **_: torch.nn.functional.leaky_relu(x, alpha), def_alpha=0.2, def_gain=np.sqrt(2), cuda_idx=3, ref='y', has_2nd_grad=False),
|
|
|
|
'tanh': dnnlib.EasyDict(func=lambda x, **_: torch.tanh(x), def_alpha=0, def_gain=1, cuda_idx=4, ref='y', has_2nd_grad=True),
|
|
|
|
'sigmoid': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x), def_alpha=0, def_gain=1, cuda_idx=5, ref='y', has_2nd_grad=True),
|
|
|
|
'elu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.elu(x), def_alpha=0, def_gain=1, cuda_idx=6, ref='y', has_2nd_grad=True),
|
|
|
|
'selu': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.selu(x), def_alpha=0, def_gain=1, cuda_idx=7, ref='y', has_2nd_grad=True),
|
|
|
|
'softplus': dnnlib.EasyDict(func=lambda x, **_: torch.nn.functional.softplus(x), def_alpha=0, def_gain=1, cuda_idx=8, ref='y', has_2nd_grad=True),
|
|
|
|
'swish': dnnlib.EasyDict(func=lambda x, **_: torch.sigmoid(x) * x, def_alpha=0, def_gain=np.sqrt(2), cuda_idx=9, ref='x', has_2nd_grad=True),
|
|
|
|
}
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
_plugin = None
|
|
|
|
_null_tensor = torch.empty([0])
|
|
|
|
|
|
|
|
def _init():
|
|
|
|
global _plugin
|
|
|
|
if _plugin is None:
|
|
|
|
_plugin = custom_ops.get_plugin(
|
|
|
|
module_name='bias_act_plugin',
|
|
|
|
sources=['bias_act.cpp', 'bias_act.cu'],
|
|
|
|
headers=['bias_act.h'],
|
|
|
|
source_dir=os.path.dirname(__file__),
|
|
|
|
extra_cuda_cflags=['--use_fast_math'],
|
|
|
|
)
|
|
|
|
return True
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def bias_act(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None, impl='cuda'):
|
|
|
|
r"""Fused bias and activation function.
|
|
|
|
|
|
|
|
Adds bias `b` to activation tensor `x`, evaluates activation function `act`,
|
|
|
|
and scales the result by `gain`. Each of the steps is optional. In most cases,
|
|
|
|
the fused op is considerably more efficient than performing the same calculation
|
|
|
|
using standard PyTorch ops. It supports first and second order gradients,
|
|
|
|
but not third order gradients.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
x: Input activation tensor. Can be of any shape.
|
|
|
|
b: Bias vector, or `None` to disable. Must be a 1D tensor of the same type
|
|
|
|
as `x`. The shape must be known, and it must match the dimension of `x`
|
|
|
|
corresponding to `dim`.
|
|
|
|
dim: The dimension in `x` corresponding to the elements of `b`.
|
|
|
|
The value of `dim` is ignored if `b` is not specified.
|
|
|
|
act: Name of the activation function to evaluate, or `"linear"` to disable.
|
|
|
|
Can be e.g. `"relu"`, `"lrelu"`, `"tanh"`, `"sigmoid"`, `"swish"`, etc.
|
|
|
|
See `activation_funcs` for a full list. `None` is not allowed.
|
|
|
|
alpha: Shape parameter for the activation function, or `None` to use the default.
|
|
|
|
gain: Scaling factor for the output tensor, or `None` to use default.
|
|
|
|
See `activation_funcs` for the default scaling of each activation function.
|
|
|
|
If unsure, consider specifying 1.
|
|
|
|
clamp: Clamp the output values to `[-clamp, +clamp]`, or `None` to disable
|
|
|
|
the clamping (default).
|
|
|
|
impl: Name of the implementation to use. Can be `"ref"` or `"cuda"` (default).
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Tensor of the same shape and datatype as `x`.
|
|
|
|
"""
|
|
|
|
assert isinstance(x, torch.Tensor)
|
|
|
|
assert impl in ['ref', 'cuda']
|
|
|
|
if impl == 'cuda' and x.device.type == 'cuda' and _init():
|
|
|
|
return _bias_act_cuda(dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp).apply(x, b)
|
|
|
|
return _bias_act_ref(x=x, b=b, dim=dim, act=act, alpha=alpha, gain=gain, clamp=clamp)
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
@misc.profiled_function
|
|
|
|
def _bias_act_ref(x, b=None, dim=1, act='linear', alpha=None, gain=None, clamp=None):
|
|
|
|
"""Slow reference implementation of `bias_act()` using standard TensorFlow ops.
|
|
|
|
"""
|
|
|
|
assert isinstance(x, torch.Tensor)
|
|
|
|
assert clamp is None or clamp >= 0
|
|
|
|
spec = activation_funcs[act]
|
|
|
|
alpha = float(alpha if alpha is not None else spec.def_alpha)
|
|
|
|
gain = float(gain if gain is not None else spec.def_gain)
|
|
|
|
clamp = float(clamp if clamp is not None else -1)
|
|
|
|
|
|
|
|
# Add bias.
|
|
|
|
if b is not None:
|
|
|
|
assert isinstance(b, torch.Tensor) and b.ndim == 1
|
|
|
|
assert 0 <= dim < x.ndim
|
|
|
|
assert b.shape[0] == x.shape[dim]
|
|
|
|
x = x + b.reshape([-1 if i == dim else 1 for i in range(x.ndim)])
|
|
|
|
|
|
|
|
# Evaluate activation function.
|
|
|
|
alpha = float(alpha)
|
|
|
|
x = spec.func(x, alpha=alpha)
|
|
|
|
|
|
|
|
# Scale by gain.
|
|
|
|
gain = float(gain)
|
|
|
|
if gain != 1:
|
|
|
|
x = x * gain
|
|
|
|
|
|
|
|
# Clamp.
|
|
|
|
if clamp >= 0:
|
|
|
|
x = x.clamp(-clamp, clamp) # pylint: disable=invalid-unary-operand-type
|
|
|
|
return x
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
_bias_act_cuda_cache = dict()
|
|
|
|
|
|
|
|
def _bias_act_cuda(dim=1, act='linear', alpha=None, gain=None, clamp=None):
|
|
|
|
"""Fast CUDA implementation of `bias_act()` using custom ops.
|
|
|
|
"""
|
|
|
|
# Parse arguments.
|
|
|
|
assert clamp is None or clamp >= 0
|
|
|
|
spec = activation_funcs[act]
|
|
|
|
alpha = float(alpha if alpha is not None else spec.def_alpha)
|
|
|
|
gain = float(gain if gain is not None else spec.def_gain)
|
|
|
|
clamp = float(clamp if clamp is not None else -1)
|
|
|
|
|
|
|
|
# Lookup from cache.
|
|
|
|
key = (dim, act, alpha, gain, clamp)
|
|
|
|
if key in _bias_act_cuda_cache:
|
|
|
|
return _bias_act_cuda_cache[key]
|
|
|
|
|
|
|
|
# Forward op.
|
|
|
|
class BiasActCuda(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
|
|
def forward(ctx, x, b): # pylint: disable=arguments-differ
|
|
|
|
ctx.memory_format = torch.channels_last if x.ndim > 2 and x.stride(1) == 1 else torch.contiguous_format
|
|
|
|
x = x.contiguous(memory_format=ctx.memory_format)
|
|
|
|
b = b.contiguous() if b is not None else _null_tensor
|
|
|
|
y = x
|
|
|
|
if act != 'linear' or gain != 1 or clamp >= 0 or b is not _null_tensor:
|
|
|
|
y = _plugin.bias_act(x, b, _null_tensor, _null_tensor, _null_tensor, 0, dim, spec.cuda_idx, alpha, gain, clamp)
|
|
|
|
ctx.save_for_backward(
|
|
|
|
x if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
|
|
|
|
b if 'x' in spec.ref or spec.has_2nd_grad else _null_tensor,
|
|
|
|
y if 'y' in spec.ref else _null_tensor)
|
|
|
|
return y
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def backward(ctx, dy): # pylint: disable=arguments-differ
|
|
|
|
dy = dy.contiguous(memory_format=ctx.memory_format)
|
|
|
|
x, b, y = ctx.saved_tensors
|
|
|
|
dx = None
|
|
|
|
db = None
|
|
|
|
|
|
|
|
if ctx.needs_input_grad[0] or ctx.needs_input_grad[1]:
|
|
|
|
dx = dy
|
|
|
|
if act != 'linear' or gain != 1 or clamp >= 0:
|
|
|
|
dx = BiasActCudaGrad.apply(dy, x, b, y)
|
|
|
|
|
|
|
|
if ctx.needs_input_grad[1]:
|
|
|
|
db = dx.sum([i for i in range(dx.ndim) if i != dim])
|
|
|
|
|
|
|
|
return dx, db
|
|
|
|
|
|
|
|
# Backward op.
|
|
|
|
class BiasActCudaGrad(torch.autograd.Function):
|
|
|
|
@staticmethod
|
|
|
|
def forward(ctx, dy, x, b, y): # pylint: disable=arguments-differ
|
|
|
|
ctx.memory_format = torch.channels_last if dy.ndim > 2 and dy.stride(1) == 1 else torch.contiguous_format
|
|
|
|
dx = _plugin.bias_act(dy, b, x, y, _null_tensor, 1, dim, spec.cuda_idx, alpha, gain, clamp)
|
|
|
|
ctx.save_for_backward(
|
|
|
|
dy if spec.has_2nd_grad else _null_tensor,
|
|
|
|
x, b, y)
|
|
|
|
return dx
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
def backward(ctx, d_dx): # pylint: disable=arguments-differ
|
|
|
|
d_dx = d_dx.contiguous(memory_format=ctx.memory_format)
|
|
|
|
dy, x, b, y = ctx.saved_tensors
|
|
|
|
d_dy = None
|
|
|
|
d_x = None
|
|
|
|
d_b = None
|
|
|
|
d_y = None
|
|
|
|
|
|
|
|
if ctx.needs_input_grad[0]:
|
|
|
|
d_dy = BiasActCudaGrad.apply(d_dx, x, b, y)
|
|
|
|
|
|
|
|
if spec.has_2nd_grad and (ctx.needs_input_grad[1] or ctx.needs_input_grad[2]):
|
|
|
|
d_x = _plugin.bias_act(d_dx, b, x, y, dy, 2, dim, spec.cuda_idx, alpha, gain, clamp)
|
|
|
|
|
|
|
|
if spec.has_2nd_grad and ctx.needs_input_grad[2]:
|
|
|
|
d_b = d_x.sum([i for i in range(d_x.ndim) if i != dim])
|
|
|
|
|
|
|
|
return d_dy, d_x, d_b, d_y
|
|
|
|
|
|
|
|
# Add to cache.
|
|
|
|
_bias_act_cuda_cache[key] = BiasActCuda
|
|
|
|
return BiasActCuda
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|