stylegan3/torch_utils/ops/upfirdn2d.cu

385 lines
23 KiB
Text
Raw Normal View History

2021-10-07 11:55:26 +02:00
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
//
// NVIDIA CORPORATION and its licensors retain all intellectual property
// and proprietary rights in and to this software, related documentation
// and any modifications thereto. Any use, reproduction, disclosure or
// distribution of this software and related documentation without an express
// license agreement from NVIDIA CORPORATION is strictly prohibited.
#include <c10/util/Half.h>
#include "upfirdn2d.h"
//------------------------------------------------------------------------
// Helpers.
template <class T> struct InternalType;
template <> struct InternalType<double> { typedef double scalar_t; };
template <> struct InternalType<float> { typedef float scalar_t; };
template <> struct InternalType<c10::Half> { typedef float scalar_t; };
static __device__ __forceinline__ int floor_div(int a, int b)
{
int t = 1 - a / b;
return (a + t * b) / b - t;
}
//------------------------------------------------------------------------
// Generic CUDA implementation for large filters.
template <class T> static __global__ void upfirdn2d_kernel_large(upfirdn2d_kernel_params p)
{
typedef typename InternalType<T>::scalar_t scalar_t;
// Calculate thread index.
int minorBase = blockIdx.x * blockDim.x + threadIdx.x;
int outY = minorBase / p.launchMinor;
minorBase -= outY * p.launchMinor;
int outXBase = blockIdx.y * p.loopX * blockDim.y + threadIdx.y;
int majorBase = blockIdx.z * p.loopMajor;
if (outXBase >= p.outSize.x | outY >= p.outSize.y | majorBase >= p.sizeMajor)
return;
// Setup Y receptive field.
int midY = outY * p.down.y + p.up.y - 1 - p.pad0.y;
int inY = min(max(floor_div(midY, p.up.y), 0), p.inSize.y);
int h = min(max(floor_div(midY + p.filterSize.y, p.up.y), 0), p.inSize.y) - inY;
int filterY = midY + p.filterSize.y - (inY + 1) * p.up.y;
if (p.flip)
filterY = p.filterSize.y - 1 - filterY;
// Loop over major, minor, and X.
for (int majorIdx = 0, major = majorBase; majorIdx < p.loopMajor & major < p.sizeMajor; majorIdx++, major++)
for (int minorIdx = 0, minor = minorBase; minorIdx < p.loopMinor & minor < p.sizeMinor; minorIdx++, minor += p.launchMinor)
{
int nc = major * p.sizeMinor + minor;
int n = nc / p.inSize.z;
int c = nc - n * p.inSize.z;
for (int loopX = 0, outX = outXBase; loopX < p.loopX & outX < p.outSize.x; loopX++, outX += blockDim.y)
{
// Setup X receptive field.
int midX = outX * p.down.x + p.up.x - 1 - p.pad0.x;
int inX = min(max(floor_div(midX, p.up.x), 0), p.inSize.x);
int w = min(max(floor_div(midX + p.filterSize.x, p.up.x), 0), p.inSize.x) - inX;
int filterX = midX + p.filterSize.x - (inX + 1) * p.up.x;
if (p.flip)
filterX = p.filterSize.x - 1 - filterX;
// Initialize pointers.
const T* xp = &((const T*)p.x)[inX * p.inStride.x + inY * p.inStride.y + c * p.inStride.z + n * p.inStride.w];
const float* fp = &p.f[filterX * p.filterStride.x + filterY * p.filterStride.y];
int filterStepX = ((p.flip) ? p.up.x : -p.up.x) * p.filterStride.x;
int filterStepY = ((p.flip) ? p.up.y : -p.up.y) * p.filterStride.y;
// Inner loop.
scalar_t v = 0;
for (int y = 0; y < h; y++)
{
for (int x = 0; x < w; x++)
{
v += (scalar_t)(*xp) * (scalar_t)(*fp);
xp += p.inStride.x;
fp += filterStepX;
}
xp += p.inStride.y - w * p.inStride.x;
fp += filterStepY - w * filterStepX;
}
// Store result.
v *= p.gain;
((T*)p.y)[outX * p.outStride.x + outY * p.outStride.y + c * p.outStride.z + n * p.outStride.w] = (T)v;
}
}
}
//------------------------------------------------------------------------
// Specialized CUDA implementation for small filters.
template <class T, int upx, int upy, int downx, int downy, int filterW, int filterH, int tileOutW, int tileOutH, int loopMinor>
static __global__ void upfirdn2d_kernel_small(upfirdn2d_kernel_params p)
{
typedef typename InternalType<T>::scalar_t scalar_t;
const int tileInW = ((tileOutW - 1) * downx + filterW - 1) / upx + 1;
const int tileInH = ((tileOutH - 1) * downy + filterH - 1) / upy + 1;
__shared__ volatile scalar_t sf[filterH][filterW];
__shared__ volatile scalar_t sx[tileInH][tileInW][loopMinor];
// Calculate tile index.
int minorBase = blockIdx.x;
int tileOutY = minorBase / p.launchMinor;
minorBase -= tileOutY * p.launchMinor;
minorBase *= loopMinor;
tileOutY *= tileOutH;
int tileOutXBase = blockIdx.y * p.loopX * tileOutW;
int majorBase = blockIdx.z * p.loopMajor;
if (tileOutXBase >= p.outSize.x | tileOutY >= p.outSize.y | majorBase >= p.sizeMajor)
return;
// Load filter (flipped).
for (int tapIdx = threadIdx.x; tapIdx < filterH * filterW; tapIdx += blockDim.x)
{
int fy = tapIdx / filterW;
int fx = tapIdx - fy * filterW;
scalar_t v = 0;
if (fx < p.filterSize.x & fy < p.filterSize.y)
{
int ffx = (p.flip) ? fx : p.filterSize.x - 1 - fx;
int ffy = (p.flip) ? fy : p.filterSize.y - 1 - fy;
v = (scalar_t)p.f[ffx * p.filterStride.x + ffy * p.filterStride.y];
}
sf[fy][fx] = v;
}
// Loop over major and X.
for (int majorIdx = 0, major = majorBase; majorIdx < p.loopMajor & major < p.sizeMajor; majorIdx++, major++)
{
int baseNC = major * p.sizeMinor + minorBase;
int n = baseNC / p.inSize.z;
int baseC = baseNC - n * p.inSize.z;
for (int loopX = 0, tileOutX = tileOutXBase; loopX < p.loopX & tileOutX < p.outSize.x; loopX++, tileOutX += tileOutW)
{
// Load input pixels.
int tileMidX = tileOutX * downx + upx - 1 - p.pad0.x;
int tileMidY = tileOutY * downy + upy - 1 - p.pad0.y;
int tileInX = floor_div(tileMidX, upx);
int tileInY = floor_div(tileMidY, upy);
__syncthreads();
for (int inIdx = threadIdx.x; inIdx < tileInH * tileInW * loopMinor; inIdx += blockDim.x)
{
int relC = inIdx;
int relInX = relC / loopMinor;
int relInY = relInX / tileInW;
relC -= relInX * loopMinor;
relInX -= relInY * tileInW;
int c = baseC + relC;
int inX = tileInX + relInX;
int inY = tileInY + relInY;
scalar_t v = 0;
if (inX >= 0 & inY >= 0 & inX < p.inSize.x & inY < p.inSize.y & c < p.inSize.z)
v = (scalar_t)((const T*)p.x)[inX * p.inStride.x + inY * p.inStride.y + c * p.inStride.z + n * p.inStride.w];
sx[relInY][relInX][relC] = v;
}
// Loop over output pixels.
__syncthreads();
for (int outIdx = threadIdx.x; outIdx < tileOutH * tileOutW * loopMinor; outIdx += blockDim.x)
{
int relC = outIdx;
int relOutX = relC / loopMinor;
int relOutY = relOutX / tileOutW;
relC -= relOutX * loopMinor;
relOutX -= relOutY * tileOutW;
int c = baseC + relC;
int outX = tileOutX + relOutX;
int outY = tileOutY + relOutY;
// Setup receptive field.
int midX = tileMidX + relOutX * downx;
int midY = tileMidY + relOutY * downy;
int inX = floor_div(midX, upx);
int inY = floor_div(midY, upy);
int relInX = inX - tileInX;
int relInY = inY - tileInY;
int filterX = (inX + 1) * upx - midX - 1; // flipped
int filterY = (inY + 1) * upy - midY - 1; // flipped
// Inner loop.
if (outX < p.outSize.x & outY < p.outSize.y & c < p.outSize.z)
{
scalar_t v = 0;
#pragma unroll
for (int y = 0; y < filterH / upy; y++)
#pragma unroll
for (int x = 0; x < filterW / upx; x++)
v += sx[relInY + y][relInX + x][relC] * sf[filterY + y * upy][filterX + x * upx];
v *= p.gain;
((T*)p.y)[outX * p.outStride.x + outY * p.outStride.y + c * p.outStride.z + n * p.outStride.w] = (T)v;
}
}
}
}
}
//------------------------------------------------------------------------
// CUDA kernel selection.
template <class T> upfirdn2d_kernel_spec choose_upfirdn2d_kernel(const upfirdn2d_kernel_params& p)
{
int s = p.inStride.z, fx = p.filterSize.x, fy = p.filterSize.y;
upfirdn2d_kernel_spec spec = {(void*)upfirdn2d_kernel_large<T>, -1,-1,1, 4}; // contiguous
if (s == 1) spec = {(void*)upfirdn2d_kernel_large<T>, -1,-1,4, 1}; // channels_last
// No up/downsampling.
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1)
{
// contiguous
if (s != 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 24,24, 64,32,1>, 64,32,1, 1};
if (s != 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 16,16, 64,32,1>, 64,32,1, 1};
if (s != 1 && fx <= 7 && fy <= 7 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 7,7, 64,16,1>, 64,16,1, 1};
if (s != 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 6,6, 64,16,1>, 64,16,1, 1};
if (s != 1 && fx <= 5 && fy <= 5 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 5,5, 64,16,1>, 64,16,1, 1};
if (s != 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 4,4, 64,16,1>, 64,16,1, 1};
if (s != 1 && fx <= 3 && fy <= 3 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 3,3, 64,16,1>, 64,16,1, 1};
if (s != 1 && fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 24,1, 128,8,1>, 128,8,1, 1};
if (s != 1 && fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 16,1, 128,8,1>, 128,8,1, 1};
if (s != 1 && fx <= 8 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 8,1, 128,8,1>, 128,8,1, 1};
if (s != 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,24, 32,32,1>, 32,32,1, 1};
if (s != 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,16, 32,32,1>, 32,32,1, 1};
if (s != 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,8, 32,32,1>, 32,32,1, 1};
// channels_last
if (s == 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 24,24, 32,32,1>, 32,32,1, 1};
if (s == 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 16,16, 32,32,1>, 32,32,1, 1};
if (s == 1 && fx <= 7 && fy <= 7 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 7,7, 16,16,8>, 16,16,8, 1};
if (s == 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 6,6, 16,16,8>, 16,16,8, 1};
if (s == 1 && fx <= 5 && fy <= 5 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 5,5, 16,16,8>, 16,16,8, 1};
if (s == 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 4,4, 16,16,8>, 16,16,8, 1};
if (s == 1 && fx <= 3 && fy <= 3 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 3,3, 16,16,8>, 16,16,8, 1};
if (s == 1 && fx <= 24 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 24,1, 128,1,16>, 128,1,16, 1};
if (s == 1 && fx <= 16 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 16,1, 128,1,16>, 128,1,16, 1};
if (s == 1 && fx <= 8 && fy <= 1 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 8,1, 128,1,16>, 128,1,16, 1};
if (s == 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,24, 1,128,16>, 1,128,16, 1};
if (s == 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,16, 1,128,16>, 1,128,16, 1};
if (s == 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,1, 1,8, 1,128,16>, 1,128,16, 1};
}
// 2x upsampling.
if (p.up.x == 2 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1)
{
// contiguous
if (s != 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 24,24, 64,32,1>, 64,32,1, 1};
if (s != 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 16,16, 64,32,1>, 64,32,1, 1};
if (s != 1 && fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 8,8, 64,16,1>, 64,16,1, 1};
if (s != 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 6,6, 64,16,1>, 64,16,1, 1};
if (s != 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 4,4, 64,16,1>, 64,16,1, 1};
if (s != 1 && fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 2,2, 64,16,1>, 64,16,1, 1};
// channels_last
if (s == 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 24,24, 32,32,1>, 32,32,1, 1};
if (s == 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 16,16, 32,32,1>, 32,32,1, 1};
if (s == 1 && fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 8,8, 16,16,8>, 16,16,8, 1};
if (s == 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 6,6, 16,16,8>, 16,16,8, 1};
if (s == 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 4,4, 16,16,8>, 16,16,8, 1};
if (s == 1 && fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 2,2, 1,1, 2,2, 16,16,8>, 16,16,8, 1};
}
if (p.up.x == 2 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1)
{
// contiguous
if (s != 1 && fx <= 24 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 24,1, 128,8,1>, 128,8,1, 1};
if (s != 1 && fx <= 16 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 16,1, 128,8,1>, 128,8,1, 1};
if (s != 1 && fx <= 8 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 8,1, 128,8,1>, 128,8,1, 1};
// channels_last
if (s == 1 && fx <= 24 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 24,1, 128,1,16>, 128,1,16, 1};
if (s == 1 && fx <= 16 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 16,1, 128,1,16>, 128,1,16, 1};
if (s == 1 && fx <= 8 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 2,1, 1,1, 8,1, 128,1,16>, 128,1,16, 1};
}
if (p.up.x == 1 && p.up.y == 2 && p.down.x == 1 && p.down.y == 1)
{
// contiguous
if (s != 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,24, 32,32,1>, 32,32,1, 1};
if (s != 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,16, 32,32,1>, 32,32,1, 1};
if (s != 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,8, 32,32,1>, 32,32,1, 1};
// channels_last
if (s == 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,24, 1,128,16>, 1,128,16, 1};
if (s == 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,16, 1,128,16>, 1,128,16, 1};
if (s == 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,2, 1,1, 1,8, 1,128,16>, 1,128,16, 1};
}
// 2x downsampling.
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 2)
{
// contiguous
if (s != 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 24,24, 32,16,1>, 32,16,1, 1};
if (s != 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 16,16, 32,16,1>, 32,16,1, 1};
if (s != 1 && fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 8,8, 32,8,1>, 32,8,1, 1};
if (s != 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 6,6, 32,8,1>, 32,8,1, 1};
if (s != 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 4,4, 32,8,1>, 32,8,1, 1};
if (s != 1 && fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 2,2, 32,8,1>, 32,8,1, 1};
// channels_last
if (s == 1 && fx <= 24 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 24,24, 16,16,1>, 16,16,1, 1};
if (s == 1 && fx <= 16 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 16,16, 16,16,1>, 16,16,1, 1};
if (s == 1 && fx <= 8 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 8,8, 8,8,8>, 8,8,8, 1};
if (s == 1 && fx <= 6 && fy <= 6 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 6,6, 8,8,8>, 8,8,8, 1};
if (s == 1 && fx <= 4 && fy <= 4 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 4,4, 8,8,8>, 8,8,8, 1};
if (s == 1 && fx <= 2 && fy <= 2 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,2, 2,2, 8,8,8>, 8,8,8, 1};
}
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 2 && p.down.y == 1)
{
// contiguous
if (s != 1 && fx <= 24 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 24,1, 64,8,1>, 64,8,1, 1};
if (s != 1 && fx <= 16 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 16,1, 64,8,1>, 64,8,1, 1};
if (s != 1 && fx <= 8 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 8,1, 64,8,1>, 64,8,1, 1};
// channels_last
if (s == 1 && fx <= 24 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 24,1, 64,1,8>, 64,1,8, 1};
if (s == 1 && fx <= 16 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 16,1, 64,1,8>, 64,1,8, 1};
if (s == 1 && fx <= 8 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 2,1, 8,1, 64,1,8>, 64,1,8, 1};
}
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 2)
{
// contiguous
if (s != 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,24, 32,16,1>, 32,16,1, 1};
if (s != 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,16, 32,16,1>, 32,16,1, 1};
if (s != 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,8, 32,16,1>, 32,16,1, 1};
// channels_last
if (s == 1 && fx <= 1 && fy <= 24) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,24, 1,64,8>, 1,64,8, 1};
if (s == 1 && fx <= 1 && fy <= 16) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,16, 1,64,8>, 1,64,8, 1};
if (s == 1 && fx <= 1 && fy <= 8 ) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,2, 1,8, 1,64,8>, 1,64,8, 1};
}
// 4x upsampling.
if (p.up.x == 4 && p.up.y == 4 && p.down.x == 1 && p.down.y == 1)
{
// contiguous
if (s != 1 && fx <= 48 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 4,4, 1,1, 48,48, 64,32,1>, 64,32,1, 1};
if (s != 1 && fx <= 32 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 4,4, 1,1, 32,32, 64,32,1>, 64,32,1, 1};
// channels_last
if (s == 1 && fx <= 48 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 4,4, 1,1, 48,48, 32,32,1>, 32,32,1, 1};
if (s == 1 && fx <= 32 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 4,4, 1,1, 32,32, 32,32,1>, 32,32,1, 1};
}
if (p.up.x == 4 && p.up.y == 1 && p.down.x == 1 && p.down.y == 1)
{
// contiguous
if (s != 1 && fx <= 48 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 4,1, 1,1, 48,1, 128,8,1>, 128,8,1, 1};
if (s != 1 && fx <= 32 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 4,1, 1,1, 32,1, 128,8,1>, 128,8,1, 1};
// channels_last
if (s == 1 && fx <= 48 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 4,1, 1,1, 48,1, 128,1,16>, 128,1,16, 1};
if (s == 1 && fx <= 32 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 4,1, 1,1, 32,1, 128,1,16>, 128,1,16, 1};
}
if (p.up.x == 1 && p.up.y == 4 && p.down.x == 1 && p.down.y == 1)
{
// contiguous
if (s != 1 && fx <= 1 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 1,4, 1,1, 1,48, 32,32,1>, 32,32,1, 1};
if (s != 1 && fx <= 1 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 1,4, 1,1, 1,32, 32,32,1>, 32,32,1, 1};
// channels_last
if (s == 1 && fx <= 1 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 1,4, 1,1, 1,48, 1,128,16>, 1,128,16, 1};
if (s == 1 && fx <= 1 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 1,4, 1,1, 1,32, 1,128,16>, 1,128,16, 1};
}
// 4x downsampling (inefficient).
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 4 && p.down.y == 1)
{
// contiguous
if (s != 1 && fx <= 48 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 4,1, 48,1, 32,8,1>, 32,8,1, 1};
if (s != 1 && fx <= 32 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 4,1, 32,1, 32,8,1>, 32,8,1, 1};
// channels_last
if (s == 1 && fx <= 48 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 4,1, 48,1, 32,1,8>, 32,1,8, 1};
if (s == 1 && fx <= 32 && fy <= 1) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 4,1, 32,1, 32,1,8>, 32,1,8, 1};
}
if (p.up.x == 1 && p.up.y == 1 && p.down.x == 1 && p.down.y == 4)
{
// contiguous
if (s != 1 && fx <= 1 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,4, 1,48, 32,8,1>, 32,8,1, 1};
if (s != 1 && fx <= 1 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,4, 1,32, 32,8,1>, 32,8,1, 1};
// channels_last
if (s == 1 && fx <= 1 && fy <= 48) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,4, 1,48, 1,32,8>, 1,32,8, 1};
if (s == 1 && fx <= 1 && fy <= 32) spec = {(void*)upfirdn2d_kernel_small<T, 1,1, 1,4, 1,32, 1,32,8>, 1,32,8, 1};
}
return spec;
}
//------------------------------------------------------------------------
// Template specializations.
template upfirdn2d_kernel_spec choose_upfirdn2d_kernel<double> (const upfirdn2d_kernel_params& p);
template upfirdn2d_kernel_spec choose_upfirdn2d_kernel<float> (const upfirdn2d_kernel_params& p);
template upfirdn2d_kernel_spec choose_upfirdn2d_kernel<c10::Half>(const upfirdn2d_kernel_params& p);
//------------------------------------------------------------------------