2021-10-13 12:00:23 +02:00
|
|
|
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
2021-10-07 11:55:26 +02:00
|
|
|
#
|
|
|
|
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|
|
|
# and proprietary rights in and to this software, related documentation
|
|
|
|
# and any modifications thereto. Any use, reproduction, disclosure or
|
|
|
|
# distribution of this software and related documentation without an express
|
|
|
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|
|
|
|
|
|
|
"""Facilities for pickling Python code alongside other data.
|
|
|
|
|
|
|
|
The pickled code is automatically imported into a separate Python module
|
|
|
|
during unpickling. This way, any previously exported pickles will remain
|
|
|
|
usable even if the original code is no longer available, or if the current
|
|
|
|
version of the code is not consistent with what was originally pickled."""
|
|
|
|
|
|
|
|
import sys
|
|
|
|
import pickle
|
|
|
|
import io
|
|
|
|
import inspect
|
|
|
|
import copy
|
|
|
|
import uuid
|
|
|
|
import types
|
|
|
|
import dnnlib
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
_version = 6 # internal version number
|
|
|
|
_decorators = set() # {decorator_class, ...}
|
|
|
|
_import_hooks = [] # [hook_function, ...]
|
|
|
|
_module_to_src_dict = dict() # {module: src, ...}
|
|
|
|
_src_to_module_dict = dict() # {src: module, ...}
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def persistent_class(orig_class):
|
|
|
|
r"""Class decorator that extends a given class to save its source code
|
|
|
|
when pickled.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
from torch_utils import persistence
|
|
|
|
|
|
|
|
@persistence.persistent_class
|
|
|
|
class MyNetwork(torch.nn.Module):
|
|
|
|
def __init__(self, num_inputs, num_outputs):
|
|
|
|
super().__init__()
|
|
|
|
self.fc = MyLayer(num_inputs, num_outputs)
|
|
|
|
...
|
|
|
|
|
|
|
|
@persistence.persistent_class
|
|
|
|
class MyLayer(torch.nn.Module):
|
|
|
|
...
|
|
|
|
|
|
|
|
When pickled, any instance of `MyNetwork` and `MyLayer` will save its
|
|
|
|
source code alongside other internal state (e.g., parameters, buffers,
|
|
|
|
and submodules). This way, any previously exported pickle will remain
|
|
|
|
usable even if the class definitions have been modified or are no
|
|
|
|
longer available.
|
|
|
|
|
|
|
|
The decorator saves the source code of the entire Python module
|
|
|
|
containing the decorated class. It does *not* save the source code of
|
|
|
|
any imported modules. Thus, the imported modules must be available
|
|
|
|
during unpickling, also including `torch_utils.persistence` itself.
|
|
|
|
|
|
|
|
It is ok to call functions defined in the same module from the
|
|
|
|
decorated class. However, if the decorated class depends on other
|
|
|
|
classes defined in the same module, they must be decorated as well.
|
|
|
|
This is illustrated in the above example in the case of `MyLayer`.
|
|
|
|
|
|
|
|
It is also possible to employ the decorator just-in-time before
|
|
|
|
calling the constructor. For example:
|
|
|
|
|
|
|
|
cls = MyLayer
|
|
|
|
if want_to_make_it_persistent:
|
|
|
|
cls = persistence.persistent_class(cls)
|
|
|
|
layer = cls(num_inputs, num_outputs)
|
|
|
|
|
|
|
|
As an additional feature, the decorator also keeps track of the
|
|
|
|
arguments that were used to construct each instance of the decorated
|
|
|
|
class. The arguments can be queried via `obj.init_args` and
|
|
|
|
`obj.init_kwargs`, and they are automatically pickled alongside other
|
|
|
|
object state. A typical use case is to first unpickle a previous
|
|
|
|
instance of a persistent class, and then upgrade it to use the latest
|
|
|
|
version of the source code:
|
|
|
|
|
|
|
|
with open('old_pickle.pkl', 'rb') as f:
|
|
|
|
old_net = pickle.load(f)
|
|
|
|
new_net = MyNetwork(*old_obj.init_args, **old_obj.init_kwargs)
|
|
|
|
misc.copy_params_and_buffers(old_net, new_net, require_all=True)
|
|
|
|
"""
|
|
|
|
assert isinstance(orig_class, type)
|
|
|
|
if is_persistent(orig_class):
|
|
|
|
return orig_class
|
|
|
|
|
|
|
|
assert orig_class.__module__ in sys.modules
|
|
|
|
orig_module = sys.modules[orig_class.__module__]
|
|
|
|
orig_module_src = _module_to_src(orig_module)
|
|
|
|
|
|
|
|
class Decorator(orig_class):
|
|
|
|
_orig_module_src = orig_module_src
|
|
|
|
_orig_class_name = orig_class.__name__
|
|
|
|
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
|
|
super().__init__(*args, **kwargs)
|
|
|
|
self._init_args = copy.deepcopy(args)
|
|
|
|
self._init_kwargs = copy.deepcopy(kwargs)
|
|
|
|
assert orig_class.__name__ in orig_module.__dict__
|
|
|
|
_check_pickleable(self.__reduce__())
|
|
|
|
|
|
|
|
@property
|
|
|
|
def init_args(self):
|
|
|
|
return copy.deepcopy(self._init_args)
|
|
|
|
|
|
|
|
@property
|
|
|
|
def init_kwargs(self):
|
|
|
|
return dnnlib.EasyDict(copy.deepcopy(self._init_kwargs))
|
|
|
|
|
|
|
|
def __reduce__(self):
|
|
|
|
fields = list(super().__reduce__())
|
|
|
|
fields += [None] * max(3 - len(fields), 0)
|
|
|
|
if fields[0] is not _reconstruct_persistent_obj:
|
|
|
|
meta = dict(type='class', version=_version, module_src=self._orig_module_src, class_name=self._orig_class_name, state=fields[2])
|
|
|
|
fields[0] = _reconstruct_persistent_obj # reconstruct func
|
|
|
|
fields[1] = (meta,) # reconstruct args
|
|
|
|
fields[2] = None # state dict
|
|
|
|
return tuple(fields)
|
|
|
|
|
|
|
|
Decorator.__name__ = orig_class.__name__
|
|
|
|
_decorators.add(Decorator)
|
|
|
|
return Decorator
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def is_persistent(obj):
|
|
|
|
r"""Test whether the given object or class is persistent, i.e.,
|
|
|
|
whether it will save its source code when pickled.
|
|
|
|
"""
|
|
|
|
try:
|
|
|
|
if obj in _decorators:
|
|
|
|
return True
|
|
|
|
except TypeError:
|
|
|
|
pass
|
|
|
|
return type(obj) in _decorators # pylint: disable=unidiomatic-typecheck
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def import_hook(hook):
|
|
|
|
r"""Register an import hook that is called whenever a persistent object
|
|
|
|
is being unpickled. A typical use case is to patch the pickled source
|
|
|
|
code to avoid errors and inconsistencies when the API of some imported
|
|
|
|
module has changed.
|
|
|
|
|
|
|
|
The hook should have the following signature:
|
|
|
|
|
|
|
|
hook(meta) -> modified meta
|
|
|
|
|
|
|
|
`meta` is an instance of `dnnlib.EasyDict` with the following fields:
|
|
|
|
|
|
|
|
type: Type of the persistent object, e.g. `'class'`.
|
|
|
|
version: Internal version number of `torch_utils.persistence`.
|
|
|
|
module_src Original source code of the Python module.
|
|
|
|
class_name: Class name in the original Python module.
|
|
|
|
state: Internal state of the object.
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
@persistence.import_hook
|
|
|
|
def wreck_my_network(meta):
|
|
|
|
if meta.class_name == 'MyNetwork':
|
|
|
|
print('MyNetwork is being imported. I will wreck it!')
|
|
|
|
meta.module_src = meta.module_src.replace("True", "False")
|
|
|
|
return meta
|
|
|
|
"""
|
|
|
|
assert callable(hook)
|
|
|
|
_import_hooks.append(hook)
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def _reconstruct_persistent_obj(meta):
|
|
|
|
r"""Hook that is called internally by the `pickle` module to unpickle
|
|
|
|
a persistent object.
|
|
|
|
"""
|
|
|
|
meta = dnnlib.EasyDict(meta)
|
|
|
|
meta.state = dnnlib.EasyDict(meta.state)
|
|
|
|
for hook in _import_hooks:
|
|
|
|
meta = hook(meta)
|
|
|
|
assert meta is not None
|
|
|
|
|
|
|
|
assert meta.version == _version
|
|
|
|
module = _src_to_module(meta.module_src)
|
|
|
|
|
|
|
|
assert meta.type == 'class'
|
|
|
|
orig_class = module.__dict__[meta.class_name]
|
|
|
|
decorator_class = persistent_class(orig_class)
|
|
|
|
obj = decorator_class.__new__(decorator_class)
|
|
|
|
|
|
|
|
setstate = getattr(obj, '__setstate__', None)
|
|
|
|
if callable(setstate):
|
|
|
|
setstate(meta.state) # pylint: disable=not-callable
|
|
|
|
else:
|
|
|
|
obj.__dict__.update(meta.state)
|
|
|
|
return obj
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def _module_to_src(module):
|
|
|
|
r"""Query the source code of a given Python module.
|
|
|
|
"""
|
|
|
|
src = _module_to_src_dict.get(module, None)
|
|
|
|
if src is None:
|
|
|
|
src = inspect.getsource(module)
|
|
|
|
_module_to_src_dict[module] = src
|
|
|
|
_src_to_module_dict[src] = module
|
|
|
|
return src
|
|
|
|
|
|
|
|
def _src_to_module(src):
|
|
|
|
r"""Get or create a Python module for the given source code.
|
|
|
|
"""
|
|
|
|
module = _src_to_module_dict.get(src, None)
|
|
|
|
if module is None:
|
|
|
|
module_name = "_imported_module_" + uuid.uuid4().hex
|
|
|
|
module = types.ModuleType(module_name)
|
|
|
|
sys.modules[module_name] = module
|
|
|
|
_module_to_src_dict[module] = src
|
|
|
|
_src_to_module_dict[src] = module
|
|
|
|
exec(src, module.__dict__) # pylint: disable=exec-used
|
|
|
|
return module
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|
|
|
|
|
|
|
|
def _check_pickleable(obj):
|
|
|
|
r"""Check that the given object is pickleable, raising an exception if
|
|
|
|
it is not. This function is expected to be considerably more efficient
|
|
|
|
than actually pickling the object.
|
|
|
|
"""
|
|
|
|
def recurse(obj):
|
|
|
|
if isinstance(obj, (list, tuple, set)):
|
|
|
|
return [recurse(x) for x in obj]
|
|
|
|
if isinstance(obj, dict):
|
|
|
|
return [[recurse(x), recurse(y)] for x, y in obj.items()]
|
|
|
|
if isinstance(obj, (str, int, float, bool, bytes, bytearray)):
|
|
|
|
return None # Python primitive types are pickleable.
|
|
|
|
if f'{type(obj).__module__}.{type(obj).__name__}' in ['numpy.ndarray', 'torch.Tensor', 'torch.nn.parameter.Parameter']:
|
|
|
|
return None # NumPy arrays and PyTorch tensors are pickleable.
|
|
|
|
if is_persistent(obj):
|
|
|
|
return None # Persistent objects are pickleable, by virtue of the constructor check.
|
|
|
|
return obj
|
|
|
|
with io.BytesIO() as f:
|
|
|
|
pickle.dump(recurse(obj), f)
|
|
|
|
|
|
|
|
#----------------------------------------------------------------------------
|