108 lines
4.9 KiB
C++
108 lines
4.9 KiB
C++
|
// Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|||
|
//
|
|||
|
// NVIDIA CORPORATION and its licensors retain all intellectual property
|
|||
|
// and proprietary rights in and to this software, related documentation
|
|||
|
// and any modifications thereto. Any use, reproduction, disclosure or
|
|||
|
// distribution of this software and related documentation without an express
|
|||
|
// license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|||
|
|
|||
|
#include <torch/extension.h>
|
|||
|
#include <ATen/cuda/CUDAContext.h>
|
|||
|
#include <c10/cuda/CUDAGuard.h>
|
|||
|
#include "upfirdn2d.h"
|
|||
|
|
|||
|
//------------------------------------------------------------------------
|
|||
|
|
|||
|
static torch::Tensor upfirdn2d(torch::Tensor x, torch::Tensor f, int upx, int upy, int downx, int downy, int padx0, int padx1, int pady0, int pady1, bool flip, float gain)
|
|||
|
{
|
|||
|
// Validate arguments.
|
|||
|
TORCH_CHECK(x.is_cuda(), "x must reside on CUDA device");
|
|||
|
TORCH_CHECK(f.device() == x.device(), "f must reside on the same device as x");
|
|||
|
TORCH_CHECK(f.dtype() == torch::kFloat, "f must be float32");
|
|||
|
TORCH_CHECK(x.numel() <= INT_MAX, "x is too large");
|
|||
|
TORCH_CHECK(f.numel() <= INT_MAX, "f is too large");
|
|||
|
TORCH_CHECK(x.numel() > 0, "x has zero size");
|
|||
|
TORCH_CHECK(f.numel() > 0, "f has zero size");
|
|||
|
TORCH_CHECK(x.dim() == 4, "x must be rank 4");
|
|||
|
TORCH_CHECK(f.dim() == 2, "f must be rank 2");
|
|||
|
TORCH_CHECK((x.size(0)-1)*x.stride(0) + (x.size(1)-1)*x.stride(1) + (x.size(2)-1)*x.stride(2) + (x.size(3)-1)*x.stride(3) <= INT_MAX, "x memory footprint is too large");
|
|||
|
TORCH_CHECK(f.size(0) >= 1 && f.size(1) >= 1, "f must be at least 1x1");
|
|||
|
TORCH_CHECK(upx >= 1 && upy >= 1, "upsampling factor must be at least 1");
|
|||
|
TORCH_CHECK(downx >= 1 && downy >= 1, "downsampling factor must be at least 1");
|
|||
|
|
|||
|
// Create output tensor.
|
|||
|
const at::cuda::OptionalCUDAGuard device_guard(device_of(x));
|
|||
|
int outW = ((int)x.size(3) * upx + padx0 + padx1 - (int)f.size(1) + downx) / downx;
|
|||
|
int outH = ((int)x.size(2) * upy + pady0 + pady1 - (int)f.size(0) + downy) / downy;
|
|||
|
TORCH_CHECK(outW >= 1 && outH >= 1, "output must be at least 1x1");
|
|||
|
torch::Tensor y = torch::empty({x.size(0), x.size(1), outH, outW}, x.options(), x.suggest_memory_format());
|
|||
|
TORCH_CHECK(y.numel() <= INT_MAX, "output is too large");
|
|||
|
TORCH_CHECK((y.size(0)-1)*y.stride(0) + (y.size(1)-1)*y.stride(1) + (y.size(2)-1)*y.stride(2) + (y.size(3)-1)*y.stride(3) <= INT_MAX, "output memory footprint is too large");
|
|||
|
|
|||
|
// Initialize CUDA kernel parameters.
|
|||
|
upfirdn2d_kernel_params p;
|
|||
|
p.x = x.data_ptr();
|
|||
|
p.f = f.data_ptr<float>();
|
|||
|
p.y = y.data_ptr();
|
|||
|
p.up = make_int2(upx, upy);
|
|||
|
p.down = make_int2(downx, downy);
|
|||
|
p.pad0 = make_int2(padx0, pady0);
|
|||
|
p.flip = (flip) ? 1 : 0;
|
|||
|
p.gain = gain;
|
|||
|
p.inSize = make_int4((int)x.size(3), (int)x.size(2), (int)x.size(1), (int)x.size(0));
|
|||
|
p.inStride = make_int4((int)x.stride(3), (int)x.stride(2), (int)x.stride(1), (int)x.stride(0));
|
|||
|
p.filterSize = make_int2((int)f.size(1), (int)f.size(0));
|
|||
|
p.filterStride = make_int2((int)f.stride(1), (int)f.stride(0));
|
|||
|
p.outSize = make_int4((int)y.size(3), (int)y.size(2), (int)y.size(1), (int)y.size(0));
|
|||
|
p.outStride = make_int4((int)y.stride(3), (int)y.stride(2), (int)y.stride(1), (int)y.stride(0));
|
|||
|
p.sizeMajor = (p.inStride.z == 1) ? p.inSize.w : p.inSize.w * p.inSize.z;
|
|||
|
p.sizeMinor = (p.inStride.z == 1) ? p.inSize.z : 1;
|
|||
|
|
|||
|
// Choose CUDA kernel.
|
|||
|
upfirdn2d_kernel_spec spec;
|
|||
|
AT_DISPATCH_FLOATING_TYPES_AND_HALF(x.scalar_type(), "upfirdn2d_cuda", [&]
|
|||
|
{
|
|||
|
spec = choose_upfirdn2d_kernel<scalar_t>(p);
|
|||
|
});
|
|||
|
|
|||
|
// Set looping options.
|
|||
|
p.loopMajor = (p.sizeMajor - 1) / 16384 + 1;
|
|||
|
p.loopMinor = spec.loopMinor;
|
|||
|
p.loopX = spec.loopX;
|
|||
|
p.launchMinor = (p.sizeMinor - 1) / p.loopMinor + 1;
|
|||
|
p.launchMajor = (p.sizeMajor - 1) / p.loopMajor + 1;
|
|||
|
|
|||
|
// Compute grid size.
|
|||
|
dim3 blockSize, gridSize;
|
|||
|
if (spec.tileOutW < 0) // large
|
|||
|
{
|
|||
|
blockSize = dim3(4, 32, 1);
|
|||
|
gridSize = dim3(
|
|||
|
((p.outSize.y - 1) / blockSize.x + 1) * p.launchMinor,
|
|||
|
(p.outSize.x - 1) / (blockSize.y * p.loopX) + 1,
|
|||
|
p.launchMajor);
|
|||
|
}
|
|||
|
else // small
|
|||
|
{
|
|||
|
blockSize = dim3(256, 1, 1);
|
|||
|
gridSize = dim3(
|
|||
|
((p.outSize.y - 1) / spec.tileOutH + 1) * p.launchMinor,
|
|||
|
(p.outSize.x - 1) / (spec.tileOutW * p.loopX) + 1,
|
|||
|
p.launchMajor);
|
|||
|
}
|
|||
|
|
|||
|
// Launch CUDA kernel.
|
|||
|
void* args[] = {&p};
|
|||
|
AT_CUDA_CHECK(cudaLaunchKernel(spec.kernel, gridSize, blockSize, args, 0, at::cuda::getCurrentCUDAStream()));
|
|||
|
return y;
|
|||
|
}
|
|||
|
|
|||
|
//------------------------------------------------------------------------
|
|||
|
|
|||
|
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m)
|
|||
|
{
|
|||
|
m.def("upfirdn2d", &upfirdn2d);
|
|||
|
}
|
|||
|
|
|||
|
//------------------------------------------------------------------------
|