267 lines
11 KiB
Python
267 lines
11 KiB
Python
|
# Copyright (c) 2021, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
|
|||
|
#
|
|||
|
# NVIDIA CORPORATION and its licensors retain all intellectual property
|
|||
|
# and proprietary rights in and to this software, related documentation
|
|||
|
# and any modifications thereto. Any use, reproduction, disclosure or
|
|||
|
# distribution of this software and related documentation without an express
|
|||
|
# license agreement from NVIDIA CORPORATION is strictly prohibited.
|
|||
|
|
|||
|
import re
|
|||
|
import contextlib
|
|||
|
import numpy as np
|
|||
|
import torch
|
|||
|
import warnings
|
|||
|
import dnnlib
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Cached construction of constant tensors. Avoids CPU=>GPU copy when the
|
|||
|
# same constant is used multiple times.
|
|||
|
|
|||
|
_constant_cache = dict()
|
|||
|
|
|||
|
def constant(value, shape=None, dtype=None, device=None, memory_format=None):
|
|||
|
value = np.asarray(value)
|
|||
|
if shape is not None:
|
|||
|
shape = tuple(shape)
|
|||
|
if dtype is None:
|
|||
|
dtype = torch.get_default_dtype()
|
|||
|
if device is None:
|
|||
|
device = torch.device('cpu')
|
|||
|
if memory_format is None:
|
|||
|
memory_format = torch.contiguous_format
|
|||
|
|
|||
|
key = (value.shape, value.dtype, value.tobytes(), shape, dtype, device, memory_format)
|
|||
|
tensor = _constant_cache.get(key, None)
|
|||
|
if tensor is None:
|
|||
|
tensor = torch.as_tensor(value.copy(), dtype=dtype, device=device)
|
|||
|
if shape is not None:
|
|||
|
tensor, _ = torch.broadcast_tensors(tensor, torch.empty(shape))
|
|||
|
tensor = tensor.contiguous(memory_format=memory_format)
|
|||
|
_constant_cache[key] = tensor
|
|||
|
return tensor
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Replace NaN/Inf with specified numerical values.
|
|||
|
|
|||
|
try:
|
|||
|
nan_to_num = torch.nan_to_num # 1.8.0a0
|
|||
|
except AttributeError:
|
|||
|
def nan_to_num(input, nan=0.0, posinf=None, neginf=None, *, out=None): # pylint: disable=redefined-builtin
|
|||
|
assert isinstance(input, torch.Tensor)
|
|||
|
if posinf is None:
|
|||
|
posinf = torch.finfo(input.dtype).max
|
|||
|
if neginf is None:
|
|||
|
neginf = torch.finfo(input.dtype).min
|
|||
|
assert nan == 0
|
|||
|
return torch.clamp(input.unsqueeze(0).nansum(0), min=neginf, max=posinf, out=out)
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Symbolic assert.
|
|||
|
|
|||
|
try:
|
|||
|
symbolic_assert = torch._assert # 1.8.0a0 # pylint: disable=protected-access
|
|||
|
except AttributeError:
|
|||
|
symbolic_assert = torch.Assert # 1.7.0
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Context manager to temporarily suppress known warnings in torch.jit.trace().
|
|||
|
# Note: Cannot use catch_warnings because of https://bugs.python.org/issue29672
|
|||
|
|
|||
|
@contextlib.contextmanager
|
|||
|
def suppress_tracer_warnings():
|
|||
|
flt = ('ignore', None, torch.jit.TracerWarning, None, 0)
|
|||
|
warnings.filters.insert(0, flt)
|
|||
|
yield
|
|||
|
warnings.filters.remove(flt)
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Assert that the shape of a tensor matches the given list of integers.
|
|||
|
# None indicates that the size of a dimension is allowed to vary.
|
|||
|
# Performs symbolic assertion when used in torch.jit.trace().
|
|||
|
|
|||
|
def assert_shape(tensor, ref_shape):
|
|||
|
if tensor.ndim != len(ref_shape):
|
|||
|
raise AssertionError(f'Wrong number of dimensions: got {tensor.ndim}, expected {len(ref_shape)}')
|
|||
|
for idx, (size, ref_size) in enumerate(zip(tensor.shape, ref_shape)):
|
|||
|
if ref_size is None:
|
|||
|
pass
|
|||
|
elif isinstance(ref_size, torch.Tensor):
|
|||
|
with suppress_tracer_warnings(): # as_tensor results are registered as constants
|
|||
|
symbolic_assert(torch.equal(torch.as_tensor(size), ref_size), f'Wrong size for dimension {idx}')
|
|||
|
elif isinstance(size, torch.Tensor):
|
|||
|
with suppress_tracer_warnings(): # as_tensor results are registered as constants
|
|||
|
symbolic_assert(torch.equal(size, torch.as_tensor(ref_size)), f'Wrong size for dimension {idx}: expected {ref_size}')
|
|||
|
elif size != ref_size:
|
|||
|
raise AssertionError(f'Wrong size for dimension {idx}: got {size}, expected {ref_size}')
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Function decorator that calls torch.autograd.profiler.record_function().
|
|||
|
|
|||
|
def profiled_function(fn):
|
|||
|
def decorator(*args, **kwargs):
|
|||
|
with torch.autograd.profiler.record_function(fn.__name__):
|
|||
|
return fn(*args, **kwargs)
|
|||
|
decorator.__name__ = fn.__name__
|
|||
|
return decorator
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Sampler for torch.utils.data.DataLoader that loops over the dataset
|
|||
|
# indefinitely, shuffling items as it goes.
|
|||
|
|
|||
|
class InfiniteSampler(torch.utils.data.Sampler):
|
|||
|
def __init__(self, dataset, rank=0, num_replicas=1, shuffle=True, seed=0, window_size=0.5):
|
|||
|
assert len(dataset) > 0
|
|||
|
assert num_replicas > 0
|
|||
|
assert 0 <= rank < num_replicas
|
|||
|
assert 0 <= window_size <= 1
|
|||
|
super().__init__(dataset)
|
|||
|
self.dataset = dataset
|
|||
|
self.rank = rank
|
|||
|
self.num_replicas = num_replicas
|
|||
|
self.shuffle = shuffle
|
|||
|
self.seed = seed
|
|||
|
self.window_size = window_size
|
|||
|
|
|||
|
def __iter__(self):
|
|||
|
order = np.arange(len(self.dataset))
|
|||
|
rnd = None
|
|||
|
window = 0
|
|||
|
if self.shuffle:
|
|||
|
rnd = np.random.RandomState(self.seed)
|
|||
|
rnd.shuffle(order)
|
|||
|
window = int(np.rint(order.size * self.window_size))
|
|||
|
|
|||
|
idx = 0
|
|||
|
while True:
|
|||
|
i = idx % order.size
|
|||
|
if idx % self.num_replicas == self.rank:
|
|||
|
yield order[i]
|
|||
|
if window >= 2:
|
|||
|
j = (i - rnd.randint(window)) % order.size
|
|||
|
order[i], order[j] = order[j], order[i]
|
|||
|
idx += 1
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Utilities for operating with torch.nn.Module parameters and buffers.
|
|||
|
|
|||
|
def params_and_buffers(module):
|
|||
|
assert isinstance(module, torch.nn.Module)
|
|||
|
return list(module.parameters()) + list(module.buffers())
|
|||
|
|
|||
|
def named_params_and_buffers(module):
|
|||
|
assert isinstance(module, torch.nn.Module)
|
|||
|
return list(module.named_parameters()) + list(module.named_buffers())
|
|||
|
|
|||
|
def copy_params_and_buffers(src_module, dst_module, require_all=False):
|
|||
|
assert isinstance(src_module, torch.nn.Module)
|
|||
|
assert isinstance(dst_module, torch.nn.Module)
|
|||
|
src_tensors = dict(named_params_and_buffers(src_module))
|
|||
|
for name, tensor in named_params_and_buffers(dst_module):
|
|||
|
assert (name in src_tensors) or (not require_all)
|
|||
|
if name in src_tensors:
|
|||
|
tensor.copy_(src_tensors[name].detach()).requires_grad_(tensor.requires_grad)
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Context manager for easily enabling/disabling DistributedDataParallel
|
|||
|
# synchronization.
|
|||
|
|
|||
|
@contextlib.contextmanager
|
|||
|
def ddp_sync(module, sync):
|
|||
|
assert isinstance(module, torch.nn.Module)
|
|||
|
if sync or not isinstance(module, torch.nn.parallel.DistributedDataParallel):
|
|||
|
yield
|
|||
|
else:
|
|||
|
with module.no_sync():
|
|||
|
yield
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Check DistributedDataParallel consistency across processes.
|
|||
|
|
|||
|
def check_ddp_consistency(module, ignore_regex=None):
|
|||
|
assert isinstance(module, torch.nn.Module)
|
|||
|
for name, tensor in named_params_and_buffers(module):
|
|||
|
fullname = type(module).__name__ + '.' + name
|
|||
|
if ignore_regex is not None and re.fullmatch(ignore_regex, fullname):
|
|||
|
continue
|
|||
|
tensor = tensor.detach()
|
|||
|
if tensor.is_floating_point():
|
|||
|
tensor = nan_to_num(tensor)
|
|||
|
other = tensor.clone()
|
|||
|
torch.distributed.broadcast(tensor=other, src=0)
|
|||
|
assert (tensor == other).all(), fullname
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|
|||
|
# Print summary table of module hierarchy.
|
|||
|
|
|||
|
def print_module_summary(module, inputs, max_nesting=3, skip_redundant=True):
|
|||
|
assert isinstance(module, torch.nn.Module)
|
|||
|
assert not isinstance(module, torch.jit.ScriptModule)
|
|||
|
assert isinstance(inputs, (tuple, list))
|
|||
|
|
|||
|
# Register hooks.
|
|||
|
entries = []
|
|||
|
nesting = [0]
|
|||
|
def pre_hook(_mod, _inputs):
|
|||
|
nesting[0] += 1
|
|||
|
def post_hook(mod, _inputs, outputs):
|
|||
|
nesting[0] -= 1
|
|||
|
if nesting[0] <= max_nesting:
|
|||
|
outputs = list(outputs) if isinstance(outputs, (tuple, list)) else [outputs]
|
|||
|
outputs = [t for t in outputs if isinstance(t, torch.Tensor)]
|
|||
|
entries.append(dnnlib.EasyDict(mod=mod, outputs=outputs))
|
|||
|
hooks = [mod.register_forward_pre_hook(pre_hook) for mod in module.modules()]
|
|||
|
hooks += [mod.register_forward_hook(post_hook) for mod in module.modules()]
|
|||
|
|
|||
|
# Run module.
|
|||
|
outputs = module(*inputs)
|
|||
|
for hook in hooks:
|
|||
|
hook.remove()
|
|||
|
|
|||
|
# Identify unique outputs, parameters, and buffers.
|
|||
|
tensors_seen = set()
|
|||
|
for e in entries:
|
|||
|
e.unique_params = [t for t in e.mod.parameters() if id(t) not in tensors_seen]
|
|||
|
e.unique_buffers = [t for t in e.mod.buffers() if id(t) not in tensors_seen]
|
|||
|
e.unique_outputs = [t for t in e.outputs if id(t) not in tensors_seen]
|
|||
|
tensors_seen |= {id(t) for t in e.unique_params + e.unique_buffers + e.unique_outputs}
|
|||
|
|
|||
|
# Filter out redundant entries.
|
|||
|
if skip_redundant:
|
|||
|
entries = [e for e in entries if len(e.unique_params) or len(e.unique_buffers) or len(e.unique_outputs)]
|
|||
|
|
|||
|
# Construct table.
|
|||
|
rows = [[type(module).__name__, 'Parameters', 'Buffers', 'Output shape', 'Datatype']]
|
|||
|
rows += [['---'] * len(rows[0])]
|
|||
|
param_total = 0
|
|||
|
buffer_total = 0
|
|||
|
submodule_names = {mod: name for name, mod in module.named_modules()}
|
|||
|
for e in entries:
|
|||
|
name = '<top-level>' if e.mod is module else submodule_names[e.mod]
|
|||
|
param_size = sum(t.numel() for t in e.unique_params)
|
|||
|
buffer_size = sum(t.numel() for t in e.unique_buffers)
|
|||
|
output_shapes = [str(list(t.shape)) for t in e.outputs]
|
|||
|
output_dtypes = [str(t.dtype).split('.')[-1] for t in e.outputs]
|
|||
|
rows += [[
|
|||
|
name + (':0' if len(e.outputs) >= 2 else ''),
|
|||
|
str(param_size) if param_size else '-',
|
|||
|
str(buffer_size) if buffer_size else '-',
|
|||
|
(output_shapes + ['-'])[0],
|
|||
|
(output_dtypes + ['-'])[0],
|
|||
|
]]
|
|||
|
for idx in range(1, len(e.outputs)):
|
|||
|
rows += [[name + f':{idx}', '-', '-', output_shapes[idx], output_dtypes[idx]]]
|
|||
|
param_total += param_size
|
|||
|
buffer_total += buffer_size
|
|||
|
rows += [['---'] * len(rows[0])]
|
|||
|
rows += [['Total', str(param_total), str(buffer_total), '-', '-']]
|
|||
|
|
|||
|
# Print table.
|
|||
|
widths = [max(len(cell) for cell in column) for column in zip(*rows)]
|
|||
|
print()
|
|||
|
for row in rows:
|
|||
|
print(' '.join(cell + ' ' * (width - len(cell)) for cell, width in zip(row, widths)))
|
|||
|
print()
|
|||
|
return outputs
|
|||
|
|
|||
|
#----------------------------------------------------------------------------
|