135 lines
3.5 KiB
YAML
135 lines
3.5 KiB
YAML
model:
|
|
base_learning_rate: 1.0e-04
|
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
|
params:
|
|
linear_start: 0.00085
|
|
linear_end: 0.0120
|
|
num_timesteps_cond: 1
|
|
log_every_t: 200
|
|
timesteps: 1000
|
|
first_stage_key: "jpg"
|
|
cond_stage_key: "txt"
|
|
image_size: 32
|
|
channels: 4
|
|
cond_stage_trainable: false # Note: different from the one we trained before
|
|
conditioning_key: crossattn
|
|
monitor: val/loss_simple_ema
|
|
scale_factor: 0.18215
|
|
|
|
scheduler_config: # 10000 warmup steps
|
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
|
params:
|
|
warm_up_steps: [ 10000 ]
|
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
|
f_start: [ 1.e-6 ]
|
|
f_max: [ 1. ]
|
|
f_min: [ 1. ]
|
|
|
|
unet_config:
|
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
|
params:
|
|
image_size: 32 # unused
|
|
in_channels: 4
|
|
out_channels: 4
|
|
model_channels: 416
|
|
attention_resolutions: [ 4, 2, 1 ]
|
|
num_res_blocks: [ 2, 2, 2, 2 ]
|
|
channel_mult: [ 1, 2, 4, 4 ]
|
|
disable_self_attentions: [ False, False, False, False ] # converts the self-attention to a cross-attention layer if true
|
|
num_heads: 8
|
|
use_spatial_transformer: True
|
|
transformer_depth: 1
|
|
context_dim: 768
|
|
use_checkpoint: True
|
|
legacy: False
|
|
|
|
first_stage_config:
|
|
target: ldm.models.autoencoder.AutoencoderKL
|
|
params:
|
|
embed_dim: 4
|
|
monitor: val/rec_loss
|
|
ddconfig:
|
|
double_z: true
|
|
z_channels: 4
|
|
resolution: 256
|
|
in_channels: 3
|
|
out_ch: 3
|
|
ch: 128
|
|
ch_mult:
|
|
- 1
|
|
- 2
|
|
- 4
|
|
- 4
|
|
num_res_blocks: 2
|
|
attn_resolutions: []
|
|
dropout: 0.0
|
|
lossconfig:
|
|
target: torch.nn.Identity
|
|
|
|
cond_stage_config:
|
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
|
|
|
|
|
data:
|
|
target: ldm.data.laion.WebDataModuleFromConfig
|
|
params:
|
|
tar_base: "__improvedaesthetic__"
|
|
batch_size: 1
|
|
num_workers: 4
|
|
multinode: True
|
|
train:
|
|
shards: '{00000..17279}.tar -'
|
|
shuffle: 10000
|
|
image_key: jpg
|
|
image_transforms:
|
|
- target: torchvision.transforms.Resize
|
|
params:
|
|
size: 512
|
|
interpolation: 3
|
|
- target: torchvision.transforms.RandomCrop
|
|
params:
|
|
size: 512
|
|
|
|
# # NOTE use enough shards to avoid empty validation loops in workers
|
|
validation:
|
|
shards: '{17280..17535}.tar -'
|
|
shuffle: 0
|
|
image_key: jpg
|
|
image_transforms:
|
|
- target: torchvision.transforms.Resize
|
|
params:
|
|
size: 512
|
|
interpolation: 3
|
|
- target: torchvision.transforms.CenterCrop
|
|
params:
|
|
size: 512
|
|
|
|
|
|
lightning:
|
|
find_unused_parameters: false
|
|
modelcheckpoint:
|
|
params:
|
|
every_n_train_steps: 5000
|
|
callbacks:
|
|
image_logger:
|
|
target: main.ImageLogger
|
|
params:
|
|
batch_frequency: 2500
|
|
max_images: 2
|
|
increase_log_steps: False
|
|
log_first_step: False
|
|
log_images_kwargs:
|
|
use_ema_scope: False
|
|
inpaint: False
|
|
plot_progressive_rows: False
|
|
plot_diffusion_rows: False
|
|
N: 2
|
|
unconditional_guidance_scale: 3.0
|
|
unconditional_guidance_label: [""]
|
|
|
|
trainer:
|
|
#replace_sampler_ddp: False
|
|
benchmark: True
|
|
val_check_interval: 5000000 # really sorry
|
|
num_sanity_val_steps: 0
|
|
accumulate_grad_batches: 2
|