247 lines
8.7 KiB
Python
247 lines
8.7 KiB
Python
import webdataset as wds
|
|
from PIL import Image
|
|
import io
|
|
import os
|
|
import torchvision
|
|
from PIL import Image
|
|
import glob
|
|
import random
|
|
import numpy as np
|
|
import pytorch_lightning as pl
|
|
from tqdm import tqdm
|
|
from omegaconf import OmegaConf
|
|
from einops import rearrange
|
|
import torch
|
|
from webdataset.handlers import warn_and_continue
|
|
|
|
|
|
from ldm.util import instantiate_from_config
|
|
|
|
|
|
class DataWithWings(data.IterableDataset):
|
|
def __init__(self, min_size, transform=None, target_transform=None):
|
|
self.min_size = min_size
|
|
self.transform = transform if transform is not None else nn.Identity()
|
|
self.target_transform = target_transform if target_transform is not None else nn.Identity()
|
|
self.kv = OnDiskKV(file='/home/ubuntu/laion5B-watermark-safety-ordered', key_format='q', value_format='ee')
|
|
self.kv_aesthetic = OnDiskKV(file='/home/ubuntu/laion5B-aesthetic-tags-kv', key_format='q', value_format='e')
|
|
self.pwatermark_threshold = 0.8
|
|
self.punsafe_threshold = 0.5
|
|
self.aesthetic_threshold = 5.
|
|
self.total_samples = 0
|
|
self.samples = 0
|
|
location = 'pipe:aws s3 cp --quiet s3://s-datasets/laion5b/laion2B-data/{000000..231349}.tar -'
|
|
|
|
self.inner_dataset = wds.DataPipeline(
|
|
wds.ResampledShards(location),
|
|
wds.tarfile_to_samples(handler=wds.warn_and_continue),
|
|
wds.shuffle(1000, handler=wds.warn_and_continue),
|
|
wds.decode('pilrgb', handler=wds.warn_and_continue),
|
|
wds.map(self._add_tags, handler=wds.ignore_and_continue),
|
|
wds.select(self._filter_predicate),
|
|
wds.map_dict(jpg=self.transform, txt=self.target_transform, punsafe=self._punsafe_to_class, handler=wds.warn_and_continue),
|
|
wds.to_tuple('jpg', 'txt', 'punsafe', handler=wds.warn_and_continue),
|
|
)
|
|
|
|
@staticmethod
|
|
def _compute_hash(url, text):
|
|
if url is None:
|
|
url = ''
|
|
if text is None:
|
|
text = ''
|
|
total = (url + text).encode('utf-8')
|
|
return mmh3.hash64(total)[0]
|
|
|
|
def _add_tags(self, x):
|
|
hsh = self._compute_hash(x['json']['url'], x['txt'])
|
|
pwatermark, punsafe = self.kv[hsh]
|
|
aesthetic = self.kv_aesthetic[hsh][0]
|
|
return {**x, 'pwatermark': pwatermark, 'punsafe': punsafe, 'aesthetic': aesthetic}
|
|
|
|
def _punsafe_to_class(self, punsafe):
|
|
return torch.tensor(punsafe >= self.punsafe_threshold).long()
|
|
|
|
def _filter_predicate(self, x):
|
|
try:
|
|
return x['pwatermark'] < self.pwatermark_threshold and x['aesthetic'] >= self.aesthetic_threshold and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
|
|
except:
|
|
return False
|
|
|
|
def __iter__(self):
|
|
return iter(self.inner_dataset)
|
|
|
|
|
|
def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
|
"""Take a list of samples (as dictionary) and create a batch, preserving the keys.
|
|
If `tensors` is True, `ndarray` objects are combined into
|
|
tensor batches.
|
|
:param dict samples: list of samples
|
|
:param bool tensors: whether to turn lists of ndarrays into a single ndarray
|
|
:returns: single sample consisting of a batch
|
|
:rtype: dict
|
|
"""
|
|
batched = {key: [] for key in samples[0]}
|
|
|
|
for s in samples:
|
|
[batched[key].append(s[key]) for key in batched]
|
|
|
|
result = {}
|
|
for key in batched:
|
|
if isinstance(batched[key][0], (int, float)):
|
|
if combine_scalars:
|
|
result[key] = np.array(list(batched[key]))
|
|
elif isinstance(batched[key][0], torch.Tensor):
|
|
if combine_tensors:
|
|
result[key] = torch.stack(list(batched[key]))
|
|
elif isinstance(batched[key][0], np.ndarray):
|
|
if combine_tensors:
|
|
result[key] = np.array(list(batched[key]))
|
|
else:
|
|
result[key] = list(batched[key])
|
|
return result
|
|
|
|
|
|
class WebDataModuleFromConfig(pl.LightningDataModule):
|
|
def __init__(self, tar_base, batch_size, train=None, validation=None,
|
|
test=None, num_workers=4, multinode=True,
|
|
**kwargs):
|
|
super().__init__(self)
|
|
print(f'Setting tar base to {tar_base}')
|
|
self.tar_base = tar_base
|
|
self.batch_size = batch_size
|
|
self.num_workers = num_workers
|
|
self.train = train
|
|
self.validation = validation
|
|
self.test = test
|
|
self.multinode = multinode
|
|
|
|
def make_loader(self, dataset_config, train=True):
|
|
if 'image_transforms' in dataset_config:
|
|
image_transforms = [instantiate_from_config(tt) for tt in dataset_config.image_transforms]
|
|
else:
|
|
image_transforms = []
|
|
|
|
image_transforms.extend([torchvision.transforms.ToTensor(),
|
|
torchvision.transforms.Lambda(lambda x: rearrange(x * 2. - 1., 'c h w -> h w c'))])
|
|
image_transforms = torchvision.transforms.Compose(image_transforms)
|
|
|
|
if 'transforms' in dataset_config:
|
|
transforms_config = OmegaConf.to_container(dataset_config.transforms)
|
|
else:
|
|
transforms_config = dict()
|
|
|
|
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
|
|
if transforms_config[dkey] != 'identity' else identity
|
|
for dkey in transforms_config}
|
|
img_key = dataset_config.get('image_key', 'jpeg')
|
|
transform_dict.update({img_key: image_transforms})
|
|
|
|
shuffle = dataset_config.get('shuffle', 0)
|
|
shardshuffle = shuffle > 0
|
|
|
|
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
|
|
|
|
tars = os.path.join(self.tar_base, dataset_config.shards)
|
|
dset = wds.WebDataset(
|
|
tars,
|
|
nodesplitter=nodesplitter,
|
|
shardshuffle=shardshuffle).shuffle(shuffle)
|
|
print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
|
|
|
|
dset = (dset
|
|
.decode('pil', handler=warn_and_continue)
|
|
.map_dict(**transform_dict, handler=wds.warn_and_continue)
|
|
.batched(self.batch_size, partial=False,
|
|
collation_fn=dict_collation_fn)
|
|
)
|
|
|
|
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
|
|
num_workers=self.num_workers)
|
|
|
|
return loader
|
|
|
|
def train_dataloader(self):
|
|
return self.make_loader(self.train)
|
|
|
|
def val_dataloader(self):
|
|
return self.make_loader(self.validation, train=False)
|
|
|
|
def test_dataloader(self):
|
|
return self.make_loader(self.test, train=False)
|
|
|
|
|
|
def example00():
|
|
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
|
dataset = wds.WebDataset(url)
|
|
example = next(iter(dataset))
|
|
for k in example:
|
|
print(k, type(example[k]))
|
|
|
|
print(example["__key__"])
|
|
for k in ["json", "txt"]:
|
|
print(example[k].decode())
|
|
|
|
image = Image.open(io.BytesIO(example["jpg"]))
|
|
outdir = "tmp"
|
|
os.makedirs(outdir, exist_ok=True)
|
|
image.save(os.path.join(outdir, example["__key__"] + ".png"))
|
|
|
|
|
|
def load_example(example):
|
|
return {
|
|
"key": example["__key__"],
|
|
"image": Image.open(io.BytesIO(example["jpg"])),
|
|
"text": example["txt"].decode(),
|
|
}
|
|
|
|
|
|
for i, example in tqdm(enumerate(dataset)):
|
|
ex = load_example(example)
|
|
print(ex["image"].size, ex["text"])
|
|
if i >= 100:
|
|
break
|
|
|
|
|
|
def example01():
|
|
# the first laion shards contain ~10k examples each
|
|
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
|
|
|
|
batch_size = 3
|
|
shuffle_buffer = 10000
|
|
dset = wds.WebDataset(
|
|
url,
|
|
nodesplitter=wds.shardlists.split_by_node,
|
|
shardshuffle=True,
|
|
)
|
|
dset = (dset
|
|
.shuffle(shuffle_buffer, initial=shuffle_buffer)
|
|
.decode('pil', handler=warn_and_continue)
|
|
.batched(batch_size, partial=False,
|
|
collation_fn=dict_collation_fn)
|
|
)
|
|
|
|
num_workers = 2
|
|
loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
|
|
|
|
batch_sizes = list()
|
|
keys_per_epoch = list()
|
|
for epoch in range(5):
|
|
keys = list()
|
|
for batch in tqdm(loader):
|
|
batch_sizes.append(len(batch["__key__"]))
|
|
keys.append(batch["__key__"])
|
|
|
|
for bs in batch_sizes:
|
|
assert bs==batch_size
|
|
print(f"{len(batch_sizes)} batches of size {batch_size}.")
|
|
batch_sizes = list()
|
|
|
|
keys_per_epoch.append(keys)
|
|
for i_batch in [0, 1, -1]:
|
|
print(f"Batch {i_batch} of epoch {epoch}:")
|
|
print(keys[i_batch])
|
|
print("next epoch.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
example01()
|