128 lines
3.2 KiB
YAML
128 lines
3.2 KiB
YAML
model:
|
|
base_learning_rate: 1.0e-04
|
|
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
|
params:
|
|
linear_start: 0.00085
|
|
linear_end: 0.0120
|
|
num_timesteps_cond: 1
|
|
log_every_t: 200
|
|
timesteps: 1000
|
|
first_stage_key: "jpg"
|
|
cond_stage_key: "txt"
|
|
image_size: 32
|
|
channels: 4
|
|
cond_stage_trainable: true
|
|
conditioning_key: crossattn
|
|
monitor: val/loss_simple_ema
|
|
scale_factor: 0.18215
|
|
|
|
scheduler_config: # 10000 warmup steps
|
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
|
params:
|
|
warm_up_steps: [ 10000 ]
|
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
|
f_start: [ 1.e-6 ]
|
|
f_max: [ 1. ]
|
|
f_min: [ 1. ]
|
|
|
|
unet_config:
|
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
|
params:
|
|
image_size: 32
|
|
in_channels: 4
|
|
out_channels: 4
|
|
model_channels: 32 # 320 # TODO increase
|
|
attention_resolutions: [ ] # is equal to fixed spatial resolution: 32 , 16 , 8
|
|
num_res_blocks: 2
|
|
channel_mult: [ 1, ]
|
|
#num_head_channels: 32
|
|
num_heads: 8
|
|
use_spatial_transformer: True
|
|
transformer_depth: 1
|
|
context_dim: 32
|
|
use_checkpoint: False
|
|
|
|
first_stage_config:
|
|
target: ldm.models.autoencoder.AutoencoderKL
|
|
params:
|
|
embed_dim: 4
|
|
monitor: val/rec_loss
|
|
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
|
|
ddconfig:
|
|
double_z: true
|
|
z_channels: 4
|
|
resolution: 256
|
|
in_channels: 3
|
|
out_ch: 3
|
|
ch: 128
|
|
ch_mult:
|
|
- 1
|
|
- 2
|
|
- 4
|
|
- 4
|
|
num_res_blocks: 2
|
|
attn_resolutions: []
|
|
dropout: 0.0
|
|
lossconfig:
|
|
target: torch.nn.Identity
|
|
|
|
cond_stage_config:
|
|
target: ldm.modules.encoders.modules.BERTEmbedder
|
|
params:
|
|
n_embed: 32
|
|
n_layer: 1 #32 # TODO: increase
|
|
|
|
|
|
data:
|
|
target: ldm.data.laion.WebDataModuleFromConfig
|
|
params:
|
|
tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
|
|
batch_size: 4
|
|
num_workers: 4
|
|
n_nodes: 4
|
|
train:
|
|
shards: '{000000..231339}.tar -'
|
|
shuffle: 10000
|
|
image_key: jpg
|
|
image_transforms:
|
|
- target: torchvision.transforms.Resize
|
|
params:
|
|
size: 256
|
|
interpolation: 3
|
|
- target: torchvision.transforms.RandomCrop
|
|
params:
|
|
size: 256
|
|
|
|
# NOTE use enough shards to avoid empty validation loops in workers
|
|
validation:
|
|
shards: '{231346..231349}.tar -'
|
|
shuffle: 0
|
|
image_key: jpg
|
|
image_transforms:
|
|
- target: torchvision.transforms.Resize
|
|
params:
|
|
size: 256
|
|
interpolation: 3
|
|
- target: torchvision.transforms.CenterCrop
|
|
params:
|
|
size: 256
|
|
|
|
|
|
lightning:
|
|
callbacks:
|
|
image_logger:
|
|
target: main.ImageLogger
|
|
params:
|
|
batch_frequency: 500 # 5000
|
|
max_images: 8
|
|
increase_log_steps: False
|
|
log_first_step: False
|
|
|
|
|
|
trainer:
|
|
#replace_sampler_ddp: False
|
|
benchmark: True
|
|
val_check_interval: 1000 # every 20k training steps
|
|
num_sanity_val_steps: 0
|
|
|
|
|