281 lines
11 KiB
Python
281 lines
11 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
import numpy as np
|
|
from functools import partial
|
|
|
|
from ldm.modules.x_transformer import Encoder, TransformerWrapper # TODO: can we directly rely on lucidrains code and simply add this as a reuirement? --> test
|
|
from ldm.util import default
|
|
|
|
|
|
class AbstractEncoder(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
|
|
def encode(self, *args, **kwargs):
|
|
raise NotImplementedError
|
|
|
|
class IdentityEncoder(AbstractEncoder):
|
|
|
|
def encode(self, x):
|
|
return x
|
|
|
|
|
|
class ClassEmbedder(nn.Module):
|
|
def __init__(self, embed_dim, n_classes=1000, key='class'):
|
|
super().__init__()
|
|
self.key = key
|
|
self.embedding = nn.Embedding(n_classes, embed_dim)
|
|
|
|
def forward(self, batch, key=None):
|
|
if key is None:
|
|
key = self.key
|
|
# this is for use in crossattn
|
|
c = batch[key][:, None]
|
|
c = self.embedding(c)
|
|
return c
|
|
|
|
|
|
class TransformerEmbedder(AbstractEncoder):
|
|
"""Some transformer encoder layers"""
|
|
def __init__(self, n_embed, n_layer, vocab_size, max_seq_len=77, device="cuda"):
|
|
super().__init__()
|
|
self.device = device
|
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
|
attn_layers=Encoder(dim=n_embed, depth=n_layer))
|
|
|
|
def forward(self, tokens):
|
|
tokens = tokens.to(self.device) # meh
|
|
z = self.transformer(tokens, return_embeddings=True)
|
|
return z
|
|
|
|
def encode(self, x):
|
|
return self(x)
|
|
|
|
|
|
class BERTTokenizer(AbstractEncoder):
|
|
""" Uses a pretrained BERT tokenizer by huggingface. Vocab size: 30522 (?)"""
|
|
def __init__(self, device="cuda", vq_interface=True, max_length=77):
|
|
super().__init__()
|
|
from transformers import BertTokenizerFast # TODO: add to reuquirements
|
|
self.tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased")
|
|
self.device = device
|
|
self.vq_interface = vq_interface
|
|
self.max_length = max_length
|
|
|
|
def forward(self, text):
|
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
|
tokens = batch_encoding["input_ids"].to(self.device)
|
|
return tokens
|
|
|
|
@torch.no_grad()
|
|
def encode(self, text):
|
|
tokens = self(text)
|
|
if not self.vq_interface:
|
|
return tokens
|
|
return None, None, [None, None, tokens]
|
|
|
|
def decode(self, text):
|
|
return text
|
|
|
|
|
|
class BERTEmbedder(AbstractEncoder):
|
|
"""Uses the BERT tokenizr model and add some transformer encoder layers"""
|
|
def __init__(self, n_embed, n_layer, vocab_size=30522, max_seq_len=77,
|
|
device="cuda",use_tokenizer=True, embedding_dropout=0.0):
|
|
super().__init__()
|
|
self.use_tknz_fn = use_tokenizer
|
|
if self.use_tknz_fn:
|
|
self.tknz_fn = BERTTokenizer(vq_interface=False, max_length=max_seq_len)
|
|
self.device = device
|
|
self.transformer = TransformerWrapper(num_tokens=vocab_size, max_seq_len=max_seq_len,
|
|
attn_layers=Encoder(dim=n_embed, depth=n_layer),
|
|
emb_dropout=embedding_dropout)
|
|
|
|
def forward(self, text):
|
|
if self.use_tknz_fn:
|
|
tokens = self.tknz_fn(text)#.to(self.device)
|
|
else:
|
|
tokens = text
|
|
z = self.transformer(tokens, return_embeddings=True)
|
|
return z
|
|
|
|
def encode(self, text):
|
|
# output of length 77
|
|
return self(text)
|
|
|
|
|
|
from transformers import T5Tokenizer, T5EncoderModel, CLIPTokenizer, CLIPTextModel
|
|
|
|
def disabled_train(self, mode=True):
|
|
"""Overwrite model.train with this function to make sure train/eval mode
|
|
does not change anymore."""
|
|
return self
|
|
|
|
|
|
class FrozenT5Embedder(AbstractEncoder):
|
|
"""Uses the T5 transformer encoder for text"""
|
|
def __init__(self, version="google/t5-v1_1-large", device="cuda", max_length=77): # others are google/t5-v1_1-xl and google/t5-v1_1-xxl
|
|
super().__init__()
|
|
self.tokenizer = T5Tokenizer.from_pretrained(version)
|
|
self.transformer = T5EncoderModel.from_pretrained(version)
|
|
self.device = device
|
|
self.max_length = max_length # TODO: typical value?
|
|
self.freeze()
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
#self.train = disabled_train
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(self, text):
|
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
|
tokens = batch_encoding["input_ids"].to(self.device)
|
|
outputs = self.transformer(input_ids=tokens)
|
|
|
|
z = outputs.last_hidden_state
|
|
return z
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
class FrozenCLIPEmbedder(AbstractEncoder):
|
|
"""Uses the CLIP transformer encoder for text (from huggingface)"""
|
|
def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32
|
|
super().__init__()
|
|
self.tokenizer = CLIPTokenizer.from_pretrained(version)
|
|
self.transformer = CLIPTextModel.from_pretrained(version)
|
|
self.device = device
|
|
self.max_length = max_length # TODO: typical value?
|
|
self.freeze()
|
|
|
|
def freeze(self):
|
|
self.transformer = self.transformer.eval()
|
|
#self.train = disabled_train
|
|
for param in self.parameters():
|
|
param.requires_grad = False
|
|
|
|
def forward(self, text):
|
|
batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True,
|
|
return_overflowing_tokens=False, padding="max_length", return_tensors="pt")
|
|
tokens = batch_encoding["input_ids"].to(self.device)
|
|
outputs = self.transformer(input_ids=tokens)
|
|
|
|
z = outputs.last_hidden_state
|
|
return z
|
|
|
|
def encode(self, text):
|
|
return self(text)
|
|
|
|
|
|
class SpatialRescaler(nn.Module):
|
|
def __init__(self,
|
|
n_stages=1,
|
|
method='bilinear',
|
|
multiplier=0.5,
|
|
in_channels=3,
|
|
out_channels=None,
|
|
bias=False):
|
|
super().__init__()
|
|
self.n_stages = n_stages
|
|
assert self.n_stages >= 0
|
|
assert method in ['nearest','linear','bilinear','trilinear','bicubic','area']
|
|
self.multiplier = multiplier
|
|
self.interpolator = partial(torch.nn.functional.interpolate, mode=method)
|
|
self.remap_output = out_channels is not None
|
|
if self.remap_output:
|
|
print(f'Spatial Rescaler mapping from {in_channels} to {out_channels} channels after resizing.')
|
|
self.channel_mapper = nn.Conv2d(in_channels,out_channels,1,bias=bias)
|
|
|
|
def forward(self,x):
|
|
for stage in range(self.n_stages):
|
|
x = self.interpolator(x, scale_factor=self.multiplier)
|
|
|
|
|
|
if self.remap_output:
|
|
x = self.channel_mapper(x)
|
|
return x
|
|
|
|
def encode(self, x):
|
|
return self(x)
|
|
|
|
|
|
from ldm.util import instantiate_from_config
|
|
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
|
|
|
|
|
|
class LowScaleEncoder(nn.Module):
|
|
def __init__(self, model_config, linear_start, linear_end, timesteps=1000, max_noise_level=250, output_size=64,
|
|
scale_factor=1.0):
|
|
super().__init__()
|
|
self.max_noise_level = max_noise_level
|
|
self.model = instantiate_from_config(model_config)
|
|
self.augmentation_schedule = self.register_schedule(timesteps=timesteps, linear_start=linear_start,
|
|
linear_end=linear_end)
|
|
self.out_size = output_size
|
|
self.scale_factor = scale_factor
|
|
|
|
def register_schedule(self, beta_schedule="linear", timesteps=1000,
|
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
|
betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end,
|
|
cosine_s=cosine_s)
|
|
alphas = 1. - betas
|
|
alphas_cumprod = np.cumprod(alphas, axis=0)
|
|
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
|
|
|
|
timesteps, = betas.shape
|
|
self.num_timesteps = int(timesteps)
|
|
self.linear_start = linear_start
|
|
self.linear_end = linear_end
|
|
assert alphas_cumprod.shape[0] == self.num_timesteps, 'alphas have to be defined for each timestep'
|
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32)
|
|
|
|
self.register_buffer('betas', to_torch(betas))
|
|
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
|
|
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
|
|
|
|
# calculations for diffusion q(x_t | x_{t-1}) and others
|
|
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
|
|
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
|
|
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
|
|
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
|
|
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
|
|
|
|
def q_sample(self, x_start, t, noise=None):
|
|
noise = default(noise, lambda: torch.randn_like(x_start))
|
|
return (extract_into_tensor(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
|
|
extract_into_tensor(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise)
|
|
|
|
def forward(self, x):
|
|
z = self.model.encode(x).sample()
|
|
z = z * self.scale_factor
|
|
noise_level = torch.randint(0, self.max_noise_level, (x.shape[0],), device=x.device).long()
|
|
z = self.q_sample(z, noise_level)
|
|
if self.out_size is not None:
|
|
z = torch.nn.functional.interpolate(z, size=self.out_size, mode="nearest") # TODO: experiment with mode
|
|
# z = z.repeat_interleave(2, -2).repeat_interleave(2, -1)
|
|
return z, noise_level
|
|
|
|
def decode(self, z):
|
|
z = z / self.scale_factor
|
|
return self.model.decode(z)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
from ldm.util import count_params
|
|
sentences = ["a hedgehog drinking a whiskey", "der mond ist aufgegangen", "Ein Satz mit vielen Sonderzeichen: äöü ß ?! : 'xx-y/@s'"]
|
|
model = FrozenT5Embedder(version="google/t5-v1_1-xl").cuda()
|
|
count_params(model, True)
|
|
z = model(sentences)
|
|
print(z.shape)
|
|
|
|
model = FrozenCLIPEmbedder().cuda()
|
|
count_params(model, True)
|
|
z = model(sentences)
|
|
print(z.shape)
|
|
|
|
print("done.")
|