30 lines
1.3 KiB
Python
30 lines
1.3 KiB
Python
import socket
|
|
try:
|
|
import torch
|
|
n_gpus = torch.cuda.device_count()
|
|
print(f"checking {n_gpus} gpus.")
|
|
for i_gpu in range(n_gpus):
|
|
print(i_gpu)
|
|
device = torch.device(f"cuda:{i_gpu}")
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
torch.backends.cudnn.benchmark = True
|
|
torch.backends.cudnn.deterministic = False
|
|
torch.backends.cudnn.allow_tf32 = True
|
|
data = torch.randn([4, 640, 32, 32], dtype=torch.float, device=device, requires_grad=True)
|
|
net = torch.nn.Conv2d(640, 640, kernel_size=[3, 3], padding=[1, 1], stride=[1, 1], dilation=[1, 1], groups=1)
|
|
net = net.to(device=device).float()
|
|
out = net(data)
|
|
out.backward(torch.randn_like(out))
|
|
torch.cuda.synchronize()
|
|
except RuntimeError as err:
|
|
import requests
|
|
import datetime
|
|
import os
|
|
device = os.environ.get("CUDA_VISIBLE_DEVICES", "?")
|
|
hostname = socket.gethostname()
|
|
ts = datetime.datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S')
|
|
resp = requests.get('http://169.254.169.254/latest/meta-data/instance-id')
|
|
print(f'ERROR at {ts} on {hostname}/{resp.text} (CUDA_VISIBLE_DEVICES={device}): {type(err).__name__}: {err}', flush=True)
|
|
raise err
|
|
else:
|
|
print(f"checked {socket.gethostname()}")
|