stable-diffusion-finetune/ldm/modules/image_degradation/utils_image.py
2021-12-21 03:23:41 +01:00

916 lines
No EOL
28 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import os
import math
import random
import numpy as np
import torch
import cv2
from torchvision.utils import make_grid
from datetime import datetime
#import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
'''
# --------------------------------------------
# Kai Zhang (github: https://github.com/cszn)
# 03/Mar/2019
# --------------------------------------------
# https://github.com/twhui/SRGAN-pyTorch
# https://github.com/xinntao/BasicSR
# --------------------------------------------
'''
IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif']
def is_image_file(filename):
return any(filename.endswith(extension) for extension in IMG_EXTENSIONS)
def get_timestamp():
return datetime.now().strftime('%y%m%d-%H%M%S')
def imshow(x, title=None, cbar=False, figsize=None):
plt.figure(figsize=figsize)
plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray')
if title:
plt.title(title)
if cbar:
plt.colorbar()
plt.show()
def surf(Z, cmap='rainbow', figsize=None):
plt.figure(figsize=figsize)
ax3 = plt.axes(projection='3d')
w, h = Z.shape[:2]
xx = np.arange(0,w,1)
yy = np.arange(0,h,1)
X, Y = np.meshgrid(xx, yy)
ax3.plot_surface(X,Y,Z,cmap=cmap)
#ax3.contour(X,Y,Z, zdim='z',offset=-2cmap=cmap)
plt.show()
'''
# --------------------------------------------
# get image pathes
# --------------------------------------------
'''
def get_image_paths(dataroot):
paths = None # return None if dataroot is None
if dataroot is not None:
paths = sorted(_get_paths_from_images(dataroot))
return paths
def _get_paths_from_images(path):
assert os.path.isdir(path), '{:s} is not a valid directory'.format(path)
images = []
for dirpath, _, fnames in sorted(os.walk(path)):
for fname in sorted(fnames):
if is_image_file(fname):
img_path = os.path.join(dirpath, fname)
images.append(img_path)
assert images, '{:s} has no valid image file'.format(path)
return images
'''
# --------------------------------------------
# split large images into small images
# --------------------------------------------
'''
def patches_from_image(img, p_size=512, p_overlap=64, p_max=800):
w, h = img.shape[:2]
patches = []
if w > p_max and h > p_max:
w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int))
h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int))
w1.append(w-p_size)
h1.append(h-p_size)
# print(w1)
# print(h1)
for i in w1:
for j in h1:
patches.append(img[i:i+p_size, j:j+p_size,:])
else:
patches.append(img)
return patches
def imssave(imgs, img_path):
"""
imgs: list, N images of size WxHxC
"""
img_name, ext = os.path.splitext(os.path.basename(img_path))
for i, img in enumerate(imgs):
if img.ndim == 3:
img = img[:, :, [2, 1, 0]]
new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png')
cv2.imwrite(new_path, img)
def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000):
"""
split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size),
and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max)
will be splitted.
Args:
original_dataroot:
taget_dataroot:
p_size: size of small images
p_overlap: patch size in training is a good choice
p_max: images with smaller size than (p_max)x(p_max) keep unchanged.
"""
paths = get_image_paths(original_dataroot)
for img_path in paths:
# img_name, ext = os.path.splitext(os.path.basename(img_path))
img = imread_uint(img_path, n_channels=n_channels)
patches = patches_from_image(img, p_size, p_overlap, p_max)
imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path)))
#if original_dataroot == taget_dataroot:
#del img_path
'''
# --------------------------------------------
# makedir
# --------------------------------------------
'''
def mkdir(path):
if not os.path.exists(path):
os.makedirs(path)
def mkdirs(paths):
if isinstance(paths, str):
mkdir(paths)
else:
for path in paths:
mkdir(path)
def mkdir_and_rename(path):
if os.path.exists(path):
new_name = path + '_archived_' + get_timestamp()
print('Path already exists. Rename it to [{:s}]'.format(new_name))
os.rename(path, new_name)
os.makedirs(path)
'''
# --------------------------------------------
# read image from path
# opencv is fast, but read BGR numpy image
# --------------------------------------------
'''
# --------------------------------------------
# get uint8 image of size HxWxn_channles (RGB)
# --------------------------------------------
def imread_uint(path, n_channels=3):
# input: path
# output: HxWx3(RGB or GGG), or HxWx1 (G)
if n_channels == 1:
img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE
img = np.expand_dims(img, axis=2) # HxWx1
elif n_channels == 3:
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G
if img.ndim == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG
else:
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB
return img
# --------------------------------------------
# matlab's imwrite
# --------------------------------------------
def imsave(img, img_path):
img = np.squeeze(img)
if img.ndim == 3:
img = img[:, :, [2, 1, 0]]
cv2.imwrite(img_path, img)
def imwrite(img, img_path):
img = np.squeeze(img)
if img.ndim == 3:
img = img[:, :, [2, 1, 0]]
cv2.imwrite(img_path, img)
# --------------------------------------------
# get single image of size HxWxn_channles (BGR)
# --------------------------------------------
def read_img(path):
# read image by cv2
# return: Numpy float32, HWC, BGR, [0,1]
img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE
img = img.astype(np.float32) / 255.
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
# some images have 4 channels
if img.shape[2] > 3:
img = img[:, :, :3]
return img
'''
# --------------------------------------------
# image format conversion
# --------------------------------------------
# numpy(single) <---> numpy(unit)
# numpy(single) <---> tensor
# numpy(unit) <---> tensor
# --------------------------------------------
'''
# --------------------------------------------
# numpy(single) [0, 1] <---> numpy(unit)
# --------------------------------------------
def uint2single(img):
return np.float32(img/255.)
def single2uint(img):
return np.uint8((img.clip(0, 1)*255.).round())
def uint162single(img):
return np.float32(img/65535.)
def single2uint16(img):
return np.uint16((img.clip(0, 1)*65535.).round())
# --------------------------------------------
# numpy(unit) (HxWxC or HxW) <---> tensor
# --------------------------------------------
# convert uint to 4-dimensional torch tensor
def uint2tensor4(img):
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0)
# convert uint to 3-dimensional torch tensor
def uint2tensor3(img):
if img.ndim == 2:
img = np.expand_dims(img, axis=2)
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.)
# convert 2/3/4-dimensional torch tensor to uint
def tensor2uint(img):
img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy()
if img.ndim == 3:
img = np.transpose(img, (1, 2, 0))
return np.uint8((img*255.0).round())
# --------------------------------------------
# numpy(single) (HxWxC) <---> tensor
# --------------------------------------------
# convert single (HxWxC) to 3-dimensional torch tensor
def single2tensor3(img):
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float()
# convert single (HxWxC) to 4-dimensional torch tensor
def single2tensor4(img):
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0)
# convert torch tensor to single
def tensor2single(img):
img = img.data.squeeze().float().cpu().numpy()
if img.ndim == 3:
img = np.transpose(img, (1, 2, 0))
return img
# convert torch tensor to single
def tensor2single3(img):
img = img.data.squeeze().float().cpu().numpy()
if img.ndim == 3:
img = np.transpose(img, (1, 2, 0))
elif img.ndim == 2:
img = np.expand_dims(img, axis=2)
return img
def single2tensor5(img):
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0)
def single32tensor5(img):
return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0)
def single42tensor4(img):
return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float()
# from skimage.io import imread, imsave
def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)):
'''
Converts a torch Tensor into an image Numpy array of BGR channel order
Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order
Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default)
'''
tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp
tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1]
n_dim = tensor.dim()
if n_dim == 4:
n_img = len(tensor)
img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 3:
img_np = tensor.numpy()
img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR
elif n_dim == 2:
img_np = tensor.numpy()
else:
raise TypeError(
'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim))
if out_type == np.uint8:
img_np = (img_np * 255.0).round()
# Important. Unlike matlab, numpy.unit8() WILL NOT round by default.
return img_np.astype(out_type)
'''
# --------------------------------------------
# Augmentation, flipe and/or rotate
# --------------------------------------------
# The following two are enough.
# (1) augmet_img: numpy image of WxHxC or WxH
# (2) augment_img_tensor4: tensor image 1xCxWxH
# --------------------------------------------
'''
def augment_img(img, mode=0):
'''Kai Zhang (github: https://github.com/cszn)
'''
if mode == 0:
return img
elif mode == 1:
return np.flipud(np.rot90(img))
elif mode == 2:
return np.flipud(img)
elif mode == 3:
return np.rot90(img, k=3)
elif mode == 4:
return np.flipud(np.rot90(img, k=2))
elif mode == 5:
return np.rot90(img)
elif mode == 6:
return np.rot90(img, k=2)
elif mode == 7:
return np.flipud(np.rot90(img, k=3))
def augment_img_tensor4(img, mode=0):
'''Kai Zhang (github: https://github.com/cszn)
'''
if mode == 0:
return img
elif mode == 1:
return img.rot90(1, [2, 3]).flip([2])
elif mode == 2:
return img.flip([2])
elif mode == 3:
return img.rot90(3, [2, 3])
elif mode == 4:
return img.rot90(2, [2, 3]).flip([2])
elif mode == 5:
return img.rot90(1, [2, 3])
elif mode == 6:
return img.rot90(2, [2, 3])
elif mode == 7:
return img.rot90(3, [2, 3]).flip([2])
def augment_img_tensor(img, mode=0):
'''Kai Zhang (github: https://github.com/cszn)
'''
img_size = img.size()
img_np = img.data.cpu().numpy()
if len(img_size) == 3:
img_np = np.transpose(img_np, (1, 2, 0))
elif len(img_size) == 4:
img_np = np.transpose(img_np, (2, 3, 1, 0))
img_np = augment_img(img_np, mode=mode)
img_tensor = torch.from_numpy(np.ascontiguousarray(img_np))
if len(img_size) == 3:
img_tensor = img_tensor.permute(2, 0, 1)
elif len(img_size) == 4:
img_tensor = img_tensor.permute(3, 2, 0, 1)
return img_tensor.type_as(img)
def augment_img_np3(img, mode=0):
if mode == 0:
return img
elif mode == 1:
return img.transpose(1, 0, 2)
elif mode == 2:
return img[::-1, :, :]
elif mode == 3:
img = img[::-1, :, :]
img = img.transpose(1, 0, 2)
return img
elif mode == 4:
return img[:, ::-1, :]
elif mode == 5:
img = img[:, ::-1, :]
img = img.transpose(1, 0, 2)
return img
elif mode == 6:
img = img[:, ::-1, :]
img = img[::-1, :, :]
return img
elif mode == 7:
img = img[:, ::-1, :]
img = img[::-1, :, :]
img = img.transpose(1, 0, 2)
return img
def augment_imgs(img_list, hflip=True, rot=True):
# horizontal flip OR rotate
hflip = hflip and random.random() < 0.5
vflip = rot and random.random() < 0.5
rot90 = rot and random.random() < 0.5
def _augment(img):
if hflip:
img = img[:, ::-1, :]
if vflip:
img = img[::-1, :, :]
if rot90:
img = img.transpose(1, 0, 2)
return img
return [_augment(img) for img in img_list]
'''
# --------------------------------------------
# modcrop and shave
# --------------------------------------------
'''
def modcrop(img_in, scale):
# img_in: Numpy, HWC or HW
img = np.copy(img_in)
if img.ndim == 2:
H, W = img.shape
H_r, W_r = H % scale, W % scale
img = img[:H - H_r, :W - W_r]
elif img.ndim == 3:
H, W, C = img.shape
H_r, W_r = H % scale, W % scale
img = img[:H - H_r, :W - W_r, :]
else:
raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim))
return img
def shave(img_in, border=0):
# img_in: Numpy, HWC or HW
img = np.copy(img_in)
h, w = img.shape[:2]
img = img[border:h-border, border:w-border]
return img
'''
# --------------------------------------------
# image processing process on numpy image
# channel_convert(in_c, tar_type, img_list):
# rgb2ycbcr(img, only_y=True):
# bgr2ycbcr(img, only_y=True):
# ycbcr2rgb(img):
# --------------------------------------------
'''
def rgb2ycbcr(img, only_y=True):
'''same as matlab rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
if only_y:
rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0
else:
rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786],
[24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def ycbcr2rgb(img):
'''same as matlab ycbcr2rgb
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071],
[0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def bgr2ycbcr(img, only_y=True):
'''bgr version of rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
if only_y:
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
else:
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
def channel_convert(in_c, tar_type, img_list):
# conversion among BGR, gray and y
if in_c == 3 and tar_type == 'gray': # BGR to gray
gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list]
return [np.expand_dims(img, axis=2) for img in gray_list]
elif in_c == 3 and tar_type == 'y': # BGR to y
y_list = [bgr2ycbcr(img, only_y=True) for img in img_list]
return [np.expand_dims(img, axis=2) for img in y_list]
elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR
return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list]
else:
return img_list
'''
# --------------------------------------------
# metric, PSNR and SSIM
# --------------------------------------------
'''
# --------------------------------------------
# PSNR
# --------------------------------------------
def calculate_psnr(img1, img2, border=0):
# img1 and img2 have range [0, 255]
#img1 = img1.squeeze()
#img2 = img2.squeeze()
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
h, w = img1.shape[:2]
img1 = img1[border:h-border, border:w-border]
img2 = img2[border:h-border, border:w-border]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2)**2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
# --------------------------------------------
# SSIM
# --------------------------------------------
def calculate_ssim(img1, img2, border=0):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
#img1 = img1.squeeze()
#img2 = img2.squeeze()
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
h, w = img1.shape[:2]
img1 = img1[border:h-border, border:w-border]
img2 = img2[border:h-border, border:w-border]
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(3):
ssims.append(ssim(img1[:,:,i], img2[:,:,i]))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def ssim(img1, img2):
C1 = (0.01 * 255)**2
C2 = (0.03 * 255)**2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1**2
mu2_sq = mu2**2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
'''
# --------------------------------------------
# matlab's bicubic imresize (numpy and torch) [0, 1]
# --------------------------------------------
'''
# matlab 'imresize' function, now only support 'bicubic'
def cubic(x):
absx = torch.abs(x)
absx2 = absx**2
absx3 = absx**3
return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \
(-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx))
def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing):
if (scale < 1) and (antialiasing):
# Use a modified kernel to simultaneously interpolate and antialias- larger kernel width
kernel_width = kernel_width / scale
# Output-space coordinates
x = torch.linspace(1, out_length, out_length)
# Input-space coordinates. Calculate the inverse mapping such that 0.5
# in output space maps to 0.5 in input space, and 0.5+scale in output
# space maps to 1.5 in input space.
u = x / scale + 0.5 * (1 - 1 / scale)
# What is the left-most pixel that can be involved in the computation?
left = torch.floor(u - kernel_width / 2)
# What is the maximum number of pixels that can be involved in the
# computation? Note: it's OK to use an extra pixel here; if the
# corresponding weights are all zero, it will be eliminated at the end
# of this function.
P = math.ceil(kernel_width) + 2
# The indices of the input pixels involved in computing the k-th output
# pixel are in row k of the indices matrix.
indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view(
1, P).expand(out_length, P)
# The weights used to compute the k-th output pixel are in row k of the
# weights matrix.
distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices
# apply cubic kernel
if (scale < 1) and (antialiasing):
weights = scale * cubic(distance_to_center * scale)
else:
weights = cubic(distance_to_center)
# Normalize the weights matrix so that each row sums to 1.
weights_sum = torch.sum(weights, 1).view(out_length, 1)
weights = weights / weights_sum.expand(out_length, P)
# If a column in weights is all zero, get rid of it. only consider the first and last column.
weights_zero_tmp = torch.sum((weights == 0), 0)
if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6):
indices = indices.narrow(1, 1, P - 2)
weights = weights.narrow(1, 1, P - 2)
if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6):
indices = indices.narrow(1, 0, P - 2)
weights = weights.narrow(1, 0, P - 2)
weights = weights.contiguous()
indices = indices.contiguous()
sym_len_s = -indices.min() + 1
sym_len_e = indices.max() - in_length
indices = indices + sym_len_s - 1
return weights, indices, int(sym_len_s), int(sym_len_e)
# --------------------------------------------
# imresize for tensor image [0, 1]
# --------------------------------------------
def imresize(img, scale, antialiasing=True):
# Now the scale should be the same for H and W
# input: img: pytorch tensor, CHW or HW [0,1]
# output: CHW or HW [0,1] w/o round
need_squeeze = True if img.dim() == 2 else False
if need_squeeze:
img.unsqueeze_(0)
in_C, in_H, in_W = img.size()
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
kernel_width = 4
kernel = 'cubic'
# Return the desired dimension order for performing the resize. The
# strategy is to perform the resize first along the dimension with the
# smallest scale factor.
# Now we do not support this.
# get weights and indices
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
in_H, out_H, scale, kernel, kernel_width, antialiasing)
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
in_W, out_W, scale, kernel, kernel_width, antialiasing)
# process H dimension
# symmetric copying
img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W)
img_aug.narrow(1, sym_len_Hs, in_H).copy_(img)
sym_patch = img[:, :sym_len_Hs, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv)
sym_patch = img[:, -sym_len_He:, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
out_1 = torch.FloatTensor(in_C, out_H, in_W)
kernel_width = weights_H.size(1)
for i in range(out_H):
idx = int(indices_H[i][0])
for j in range(out_C):
out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i])
# process W dimension
# symmetric copying
out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We)
out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1)
sym_patch = out_1[:, :, :sym_len_Ws]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv)
sym_patch = out_1[:, :, -sym_len_We:]
inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(2, inv_idx)
out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
out_2 = torch.FloatTensor(in_C, out_H, out_W)
kernel_width = weights_W.size(1)
for i in range(out_W):
idx = int(indices_W[i][0])
for j in range(out_C):
out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i])
if need_squeeze:
out_2.squeeze_()
return out_2
# --------------------------------------------
# imresize for numpy image [0, 1]
# --------------------------------------------
def imresize_np(img, scale, antialiasing=True):
# Now the scale should be the same for H and W
# input: img: Numpy, HWC or HW [0,1]
# output: HWC or HW [0,1] w/o round
img = torch.from_numpy(img)
need_squeeze = True if img.dim() == 2 else False
if need_squeeze:
img.unsqueeze_(2)
in_H, in_W, in_C = img.size()
out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale)
kernel_width = 4
kernel = 'cubic'
# Return the desired dimension order for performing the resize. The
# strategy is to perform the resize first along the dimension with the
# smallest scale factor.
# Now we do not support this.
# get weights and indices
weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices(
in_H, out_H, scale, kernel, kernel_width, antialiasing)
weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices(
in_W, out_W, scale, kernel, kernel_width, antialiasing)
# process H dimension
# symmetric copying
img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C)
img_aug.narrow(0, sym_len_Hs, in_H).copy_(img)
sym_patch = img[:sym_len_Hs, :, :]
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(0, inv_idx)
img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv)
sym_patch = img[-sym_len_He:, :, :]
inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(0, inv_idx)
img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv)
out_1 = torch.FloatTensor(out_H, in_W, in_C)
kernel_width = weights_H.size(1)
for i in range(out_H):
idx = int(indices_H[i][0])
for j in range(out_C):
out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i])
# process W dimension
# symmetric copying
out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C)
out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1)
sym_patch = out_1[:, :sym_len_Ws, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv)
sym_patch = out_1[:, -sym_len_We:, :]
inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long()
sym_patch_inv = sym_patch.index_select(1, inv_idx)
out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv)
out_2 = torch.FloatTensor(out_H, out_W, in_C)
kernel_width = weights_W.size(1)
for i in range(out_W):
idx = int(indices_W[i][0])
for j in range(out_C):
out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i])
if need_squeeze:
out_2.squeeze_()
return out_2.numpy()
if __name__ == '__main__':
print('---')
# img = imread_uint('test.bmp', 3)
# img = uint2single(img)
# img_bicubic = imresize_np(img, 1/4)