# -*- coding: utf-8 -*- """ # -------------------------------------------- # Super-Resolution # -------------------------------------------- # # Kai Zhang (cskaizhang@gmail.com) # https://github.com/cszn # From 2019/03--2021/08 # -------------------------------------------- """ import numpy as np import cv2 import torch from functools import partial import random from scipy import ndimage import scipy import scipy.stats as ss from scipy.interpolate import interp2d from scipy.linalg import orth import albumentations import ldm.modules.image_degradation.utils_image as util def modcrop_np(img, sf): ''' Args: img: numpy image, WxH or WxHxC sf: scale factor Return: cropped image ''' w, h = img.shape[:2] im = np.copy(img) return im[:w - w % sf, :h - h % sf, ...] """ # -------------------------------------------- # anisotropic Gaussian kernels # -------------------------------------------- """ def analytic_kernel(k): """Calculate the X4 kernel from the X2 kernel (for proof see appendix in paper)""" k_size = k.shape[0] # Calculate the big kernels size big_k = np.zeros((3 * k_size - 2, 3 * k_size - 2)) # Loop over the small kernel to fill the big one for r in range(k_size): for c in range(k_size): big_k[2 * r:2 * r + k_size, 2 * c:2 * c + k_size] += k[r, c] * k # Crop the edges of the big kernel to ignore very small values and increase run time of SR crop = k_size // 2 cropped_big_k = big_k[crop:-crop, crop:-crop] # Normalize to 1 return cropped_big_k / cropped_big_k.sum() def anisotropic_Gaussian(ksize=15, theta=np.pi, l1=6, l2=6): """ generate an anisotropic Gaussian kernel Args: ksize : e.g., 15, kernel size theta : [0, pi], rotation angle range l1 : [0.1,50], scaling of eigenvalues l2 : [0.1,l1], scaling of eigenvalues If l1 = l2, will get an isotropic Gaussian kernel. Returns: k : kernel """ v = np.dot(np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]), np.array([1., 0.])) V = np.array([[v[0], v[1]], [v[1], -v[0]]]) D = np.array([[l1, 0], [0, l2]]) Sigma = np.dot(np.dot(V, D), np.linalg.inv(V)) k = gm_blur_kernel(mean=[0, 0], cov=Sigma, size=ksize) return k def gm_blur_kernel(mean, cov, size=15): center = size / 2.0 + 0.5 k = np.zeros([size, size]) for y in range(size): for x in range(size): cy = y - center + 1 cx = x - center + 1 k[y, x] = ss.multivariate_normal.pdf([cx, cy], mean=mean, cov=cov) k = k / np.sum(k) return k def shift_pixel(x, sf, upper_left=True): """shift pixel for super-resolution with different scale factors Args: x: WxHxC or WxH sf: scale factor upper_left: shift direction """ h, w = x.shape[:2] shift = (sf - 1) * 0.5 xv, yv = np.arange(0, w, 1.0), np.arange(0, h, 1.0) if upper_left: x1 = xv + shift y1 = yv + shift else: x1 = xv - shift y1 = yv - shift x1 = np.clip(x1, 0, w - 1) y1 = np.clip(y1, 0, h - 1) if x.ndim == 2: x = interp2d(xv, yv, x)(x1, y1) if x.ndim == 3: for i in range(x.shape[-1]): x[:, :, i] = interp2d(xv, yv, x[:, :, i])(x1, y1) return x def blur(x, k): ''' x: image, NxcxHxW k: kernel, Nx1xhxw ''' n, c = x.shape[:2] p1, p2 = (k.shape[-2] - 1) // 2, (k.shape[-1] - 1) // 2 x = torch.nn.functional.pad(x, pad=(p1, p2, p1, p2), mode='replicate') k = k.repeat(1, c, 1, 1) k = k.view(-1, 1, k.shape[2], k.shape[3]) x = x.view(1, -1, x.shape[2], x.shape[3]) x = torch.nn.functional.conv2d(x, k, bias=None, stride=1, padding=0, groups=n * c) x = x.view(n, c, x.shape[2], x.shape[3]) return x def gen_kernel(k_size=np.array([15, 15]), scale_factor=np.array([4, 4]), min_var=0.6, max_var=10., noise_level=0): """" # modified version of https://github.com/assafshocher/BlindSR_dataset_generator # Kai Zhang # min_var = 0.175 * sf # variance of the gaussian kernel will be sampled between min_var and max_var # max_var = 2.5 * sf """ # Set random eigen-vals (lambdas) and angle (theta) for COV matrix lambda_1 = min_var + np.random.rand() * (max_var - min_var) lambda_2 = min_var + np.random.rand() * (max_var - min_var) theta = np.random.rand() * np.pi # random theta noise = -noise_level + np.random.rand(*k_size) * noise_level * 2 # Set COV matrix using Lambdas and Theta LAMBDA = np.diag([lambda_1, lambda_2]) Q = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) SIGMA = Q @ LAMBDA @ Q.T INV_SIGMA = np.linalg.inv(SIGMA)[None, None, :, :] # Set expectation position (shifting kernel for aligned image) MU = k_size // 2 - 0.5 * (scale_factor - 1) # - 0.5 * (scale_factor - k_size % 2) MU = MU[None, None, :, None] # Create meshgrid for Gaussian [X, Y] = np.meshgrid(range(k_size[0]), range(k_size[1])) Z = np.stack([X, Y], 2)[:, :, :, None] # Calcualte Gaussian for every pixel of the kernel ZZ = Z - MU ZZ_t = ZZ.transpose(0, 1, 3, 2) raw_kernel = np.exp(-0.5 * np.squeeze(ZZ_t @ INV_SIGMA @ ZZ)) * (1 + noise) # shift the kernel so it will be centered # raw_kernel_centered = kernel_shift(raw_kernel, scale_factor) # Normalize the kernel and return # kernel = raw_kernel_centered / np.sum(raw_kernel_centered) kernel = raw_kernel / np.sum(raw_kernel) return kernel def fspecial_gaussian(hsize, sigma): hsize = [hsize, hsize] siz = [(hsize[0] - 1.0) / 2.0, (hsize[1] - 1.0) / 2.0] std = sigma [x, y] = np.meshgrid(np.arange(-siz[1], siz[1] + 1), np.arange(-siz[0], siz[0] + 1)) arg = -(x * x + y * y) / (2 * std * std) h = np.exp(arg) h[h < scipy.finfo(float).eps * h.max()] = 0 sumh = h.sum() if sumh != 0: h = h / sumh return h def fspecial_laplacian(alpha): alpha = max([0, min([alpha, 1])]) h1 = alpha / (alpha + 1) h2 = (1 - alpha) / (alpha + 1) h = [[h1, h2, h1], [h2, -4 / (alpha + 1), h2], [h1, h2, h1]] h = np.array(h) return h def fspecial(filter_type, *args, **kwargs): ''' python code from: https://github.com/ronaldosena/imagens-medicas-2/blob/40171a6c259edec7827a6693a93955de2bd39e76/Aulas/aula_2_-_uniform_filter/matlab_fspecial.py ''' if filter_type == 'gaussian': return fspecial_gaussian(*args, **kwargs) if filter_type == 'laplacian': return fspecial_laplacian(*args, **kwargs) """ # -------------------------------------------- # degradation models # -------------------------------------------- """ def bicubic_degradation(x, sf=3): ''' Args: x: HxWxC image, [0, 1] sf: down-scale factor Return: bicubicly downsampled LR image ''' x = util.imresize_np(x, scale=1 / sf) return x def srmd_degradation(x, k, sf=3): ''' blur + bicubic downsampling Args: x: HxWxC image, [0, 1] k: hxw, double sf: down-scale factor Return: downsampled LR image Reference: @inproceedings{zhang2018learning, title={Learning a single convolutional super-resolution network for multiple degradations}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={3262--3271}, year={2018} } ''' x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # 'nearest' | 'mirror' x = bicubic_degradation(x, sf=sf) return x def dpsr_degradation(x, k, sf=3): ''' bicubic downsampling + blur Args: x: HxWxC image, [0, 1] k: hxw, double sf: down-scale factor Return: downsampled LR image Reference: @inproceedings{zhang2019deep, title={Deep Plug-and-Play Super-Resolution for Arbitrary Blur Kernels}, author={Zhang, Kai and Zuo, Wangmeng and Zhang, Lei}, booktitle={IEEE Conference on Computer Vision and Pattern Recognition}, pages={1671--1681}, year={2019} } ''' x = bicubic_degradation(x, sf=sf) x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') return x def classical_degradation(x, k, sf=3): ''' blur + downsampling Args: x: HxWxC image, [0, 1]/[0, 255] k: hxw, double sf: down-scale factor Return: downsampled LR image ''' x = ndimage.filters.convolve(x, np.expand_dims(k, axis=2), mode='wrap') # x = filters.correlate(x, np.expand_dims(np.flip(k), axis=2)) st = 0 return x[st::sf, st::sf, ...] def add_sharpening(img, weight=0.5, radius=50, threshold=10): """USM sharpening. borrowed from real-ESRGAN Input image: I; Blurry image: B. 1. K = I + weight * (I - B) 2. Mask = 1 if abs(I - B) > threshold, else: 0 3. Blur mask: 4. Out = Mask * K + (1 - Mask) * I Args: img (Numpy array): Input image, HWC, BGR; float32, [0, 1]. weight (float): Sharp weight. Default: 1. radius (float): Kernel size of Gaussian blur. Default: 50. threshold (int): """ if radius % 2 == 0: radius += 1 blur = cv2.GaussianBlur(img, (radius, radius), 0) residual = img - blur mask = np.abs(residual) * 255 > threshold mask = mask.astype('float32') soft_mask = cv2.GaussianBlur(mask, (radius, radius), 0) K = img + weight * residual K = np.clip(K, 0, 1) return soft_mask * K + (1 - soft_mask) * img def add_blur(img, sf=4): wd2 = 4.0 + sf wd = 2.0 + 0.2 * sf if random.random() < 0.5: l1 = wd2 * random.random() l2 = wd2 * random.random() k = anisotropic_Gaussian(ksize=2 * random.randint(2, 11) + 3, theta=random.random() * np.pi, l1=l1, l2=l2) else: k = fspecial('gaussian', 2 * random.randint(2, 11) + 3, wd * random.random()) img = ndimage.filters.convolve(img, np.expand_dims(k, axis=2), mode='mirror') return img def add_resize(img, sf=4): rnum = np.random.rand() if rnum > 0.8: # up sf1 = random.uniform(1, 2) elif rnum < 0.7: # down sf1 = random.uniform(0.5 / sf, 1) else: sf1 = 1.0 img = cv2.resize(img, (int(sf1 * img.shape[1]), int(sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) img = np.clip(img, 0.0, 1.0) return img # def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): # noise_level = random.randint(noise_level1, noise_level2) # rnum = np.random.rand() # if rnum > 0.6: # add color Gaussian noise # img += np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) # elif rnum < 0.4: # add grayscale Gaussian noise # img += np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) # else: # add noise # L = noise_level2 / 255. # D = np.diag(np.random.rand(3)) # U = orth(np.random.rand(3, 3)) # conv = np.dot(np.dot(np.transpose(U), D), U) # img += np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) # img = np.clip(img, 0.0, 1.0) # return img def add_Gaussian_noise(img, noise_level1=2, noise_level2=25): noise_level = random.randint(noise_level1, noise_level2) rnum = np.random.rand() if rnum > 0.6: # add color Gaussian noise img = img + np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) elif rnum < 0.4: # add grayscale Gaussian noise img = img + np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) else: # add noise L = noise_level2 / 255. D = np.diag(np.random.rand(3)) U = orth(np.random.rand(3, 3)) conv = np.dot(np.dot(np.transpose(U), D), U) img = img + np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) img = np.clip(img, 0.0, 1.0) return img def add_speckle_noise(img, noise_level1=2, noise_level2=25): noise_level = random.randint(noise_level1, noise_level2) img = np.clip(img, 0.0, 1.0) rnum = random.random() if rnum > 0.6: img += img * np.random.normal(0, noise_level / 255.0, img.shape).astype(np.float32) elif rnum < 0.4: img += img * np.random.normal(0, noise_level / 255.0, (*img.shape[:2], 1)).astype(np.float32) else: L = noise_level2 / 255. D = np.diag(np.random.rand(3)) U = orth(np.random.rand(3, 3)) conv = np.dot(np.dot(np.transpose(U), D), U) img += img * np.random.multivariate_normal([0, 0, 0], np.abs(L ** 2 * conv), img.shape[:2]).astype(np.float32) img = np.clip(img, 0.0, 1.0) return img def add_Poisson_noise(img): img = np.clip((img * 255.0).round(), 0, 255) / 255. vals = 10 ** (2 * random.random() + 2.0) # [2, 4] if random.random() < 0.5: img = np.random.poisson(img * vals).astype(np.float32) / vals else: img_gray = np.dot(img[..., :3], [0.299, 0.587, 0.114]) img_gray = np.clip((img_gray * 255.0).round(), 0, 255) / 255. noise_gray = np.random.poisson(img_gray * vals).astype(np.float32) / vals - img_gray img += noise_gray[:, :, np.newaxis] img = np.clip(img, 0.0, 1.0) return img def add_JPEG_noise(img): quality_factor = random.randint(30, 95) img = cv2.cvtColor(util.single2uint(img), cv2.COLOR_RGB2BGR) result, encimg = cv2.imencode('.jpg', img, [int(cv2.IMWRITE_JPEG_QUALITY), quality_factor]) img = cv2.imdecode(encimg, 1) img = cv2.cvtColor(util.uint2single(img), cv2.COLOR_BGR2RGB) return img def random_crop(lq, hq, sf=4, lq_patchsize=64): h, w = lq.shape[:2] rnd_h = random.randint(0, h - lq_patchsize) rnd_w = random.randint(0, w - lq_patchsize) lq = lq[rnd_h:rnd_h + lq_patchsize, rnd_w:rnd_w + lq_patchsize, :] rnd_h_H, rnd_w_H = int(rnd_h * sf), int(rnd_w * sf) hq = hq[rnd_h_H:rnd_h_H + lq_patchsize * sf, rnd_w_H:rnd_w_H + lq_patchsize * sf, :] return lq, hq def degradation_bsrgan(img, sf=4, lq_patchsize=72, isp_model=None): """ This is the degradation model of BSRGAN from the paper "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" ---------- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) sf: scale factor isp_model: camera ISP model Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 sf_ori = sf h1, w1 = img.shape[:2] img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop h, w = img.shape[:2] if h < lq_patchsize * sf or w < lq_patchsize * sf: raise ValueError(f'img size ({h1}X{w1}) is too small!') hq = img.copy() if sf == 4 and random.random() < scale2_prob: # downsample1 if np.random.rand() < 0.5: img = cv2.resize(img, (int(1 / 2 * img.shape[1]), int(1 / 2 * img.shape[0])), interpolation=random.choice([1, 2, 3])) else: img = util.imresize_np(img, 1 / 2, True) img = np.clip(img, 0.0, 1.0) sf = 2 shuffle_order = random.sample(range(7), 7) idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) if idx1 > idx2: # keep downsample3 last shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] for i in shuffle_order: if i == 0: img = add_blur(img, sf=sf) elif i == 1: img = add_blur(img, sf=sf) elif i == 2: a, b = img.shape[1], img.shape[0] # downsample2 if random.random() < 0.75: sf1 = random.uniform(1, 2 * sf) img = cv2.resize(img, (int(1 / sf1 * img.shape[1]), int(1 / sf1 * img.shape[0])), interpolation=random.choice([1, 2, 3])) else: k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) k_shifted = shift_pixel(k, sf) k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel img = ndimage.filters.convolve(img, np.expand_dims(k_shifted, axis=2), mode='mirror') img = img[0::sf, 0::sf, ...] # nearest downsampling img = np.clip(img, 0.0, 1.0) elif i == 3: # downsample3 img = cv2.resize(img, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) img = np.clip(img, 0.0, 1.0) elif i == 4: # add Gaussian noise img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) elif i == 5: # add JPEG noise if random.random() < jpeg_prob: img = add_JPEG_noise(img) elif i == 6: # add processed camera sensor noise if random.random() < isp_prob and isp_model is not None: with torch.no_grad(): img, hq = isp_model.forward(img.copy(), hq) # add final JPEG compression noise img = add_JPEG_noise(img) # random crop img, hq = random_crop(img, hq, sf_ori, lq_patchsize) return img, hq # todo no isp_model? def degradation_bsrgan_variant(image, sf=4, isp_model=None): """ This is the degradation model of BSRGAN from the paper "Designing a Practical Degradation Model for Deep Blind Image Super-Resolution" ---------- sf: scale factor isp_model: camera ISP model Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ image = util.uint2single(image) isp_prob, jpeg_prob, scale2_prob = 0.25, 0.9, 0.25 sf_ori = sf h1, w1 = image.shape[:2] image = image.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop h, w = image.shape[:2] hq = image.copy() if sf == 4 and random.random() < scale2_prob: # downsample1 if np.random.rand() < 0.5: image = cv2.resize(image, (int(1 / 2 * image.shape[1]), int(1 / 2 * image.shape[0])), interpolation=random.choice([1, 2, 3])) else: image = util.imresize_np(image, 1 / 2, True) image = np.clip(image, 0.0, 1.0) sf = 2 shuffle_order = random.sample(range(7), 7) idx1, idx2 = shuffle_order.index(2), shuffle_order.index(3) if idx1 > idx2: # keep downsample3 last shuffle_order[idx1], shuffle_order[idx2] = shuffle_order[idx2], shuffle_order[idx1] for i in shuffle_order: if i == 0: image = add_blur(image, sf=sf) elif i == 1: image = add_blur(image, sf=sf) elif i == 2: a, b = image.shape[1], image.shape[0] # downsample2 if random.random() < 0.75: sf1 = random.uniform(1, 2 * sf) image = cv2.resize(image, (int(1 / sf1 * image.shape[1]), int(1 / sf1 * image.shape[0])), interpolation=random.choice([1, 2, 3])) else: k = fspecial('gaussian', 25, random.uniform(0.1, 0.6 * sf)) k_shifted = shift_pixel(k, sf) k_shifted = k_shifted / k_shifted.sum() # blur with shifted kernel image = ndimage.filters.convolve(image, np.expand_dims(k_shifted, axis=2), mode='mirror') image = image[0::sf, 0::sf, ...] # nearest downsampling image = np.clip(image, 0.0, 1.0) elif i == 3: # downsample3 image = cv2.resize(image, (int(1 / sf * a), int(1 / sf * b)), interpolation=random.choice([1, 2, 3])) image = np.clip(image, 0.0, 1.0) elif i == 4: # add Gaussian noise image = add_Gaussian_noise(image, noise_level1=2, noise_level2=25) elif i == 5: # add JPEG noise if random.random() < jpeg_prob: image = add_JPEG_noise(image) # elif i == 6: # # add processed camera sensor noise # if random.random() < isp_prob and isp_model is not None: # with torch.no_grad(): # img, hq = isp_model.forward(img.copy(), hq) # add final JPEG compression noise image = add_JPEG_noise(image) image = util.single2uint(image) example = {"image":image} return example # TODO incase there is a pickle error one needs to replace a += x with a = a + x in add_speckle_noise etc... def degradation_bsrgan_plus(img, sf=4, shuffle_prob=0.5, use_sharp=True, lq_patchsize=64, isp_model=None): """ This is an extended degradation model by combining the degradation models of BSRGAN and Real-ESRGAN ---------- img: HXWXC, [0, 1], its size should be large than (lq_patchsizexsf)x(lq_patchsizexsf) sf: scale factor use_shuffle: the degradation shuffle use_sharp: sharpening the img Returns ------- img: low-quality patch, size: lq_patchsizeXlq_patchsizeXC, range: [0, 1] hq: corresponding high-quality patch, size: (lq_patchsizexsf)X(lq_patchsizexsf)XC, range: [0, 1] """ h1, w1 = img.shape[:2] img = img.copy()[:w1 - w1 % sf, :h1 - h1 % sf, ...] # mod crop h, w = img.shape[:2] if h < lq_patchsize * sf or w < lq_patchsize * sf: raise ValueError(f'img size ({h1}X{w1}) is too small!') if use_sharp: img = add_sharpening(img) hq = img.copy() if random.random() < shuffle_prob: shuffle_order = random.sample(range(13), 13) else: shuffle_order = list(range(13)) # local shuffle for noise, JPEG is always the last one shuffle_order[2:6] = random.sample(shuffle_order[2:6], len(range(2, 6))) shuffle_order[9:13] = random.sample(shuffle_order[9:13], len(range(9, 13))) poisson_prob, speckle_prob, isp_prob = 0.1, 0.1, 0.1 for i in shuffle_order: if i == 0: img = add_blur(img, sf=sf) elif i == 1: img = add_resize(img, sf=sf) elif i == 2: img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) elif i == 3: if random.random() < poisson_prob: img = add_Poisson_noise(img) elif i == 4: if random.random() < speckle_prob: img = add_speckle_noise(img) elif i == 5: if random.random() < isp_prob and isp_model is not None: with torch.no_grad(): img, hq = isp_model.forward(img.copy(), hq) elif i == 6: img = add_JPEG_noise(img) elif i == 7: img = add_blur(img, sf=sf) elif i == 8: img = add_resize(img, sf=sf) elif i == 9: img = add_Gaussian_noise(img, noise_level1=2, noise_level2=25) elif i == 10: if random.random() < poisson_prob: img = add_Poisson_noise(img) elif i == 11: if random.random() < speckle_prob: img = add_speckle_noise(img) elif i == 12: if random.random() < isp_prob and isp_model is not None: with torch.no_grad(): img, hq = isp_model.forward(img.copy(), hq) else: print('check the shuffle!') # resize to desired size img = cv2.resize(img, (int(1 / sf * hq.shape[1]), int(1 / sf * hq.shape[0])), interpolation=random.choice([1, 2, 3])) # add final JPEG compression noise img = add_JPEG_noise(img) # random crop img, hq = random_crop(img, hq, sf, lq_patchsize) return img, hq if __name__ == '__main__': print("hey") img = util.imread_uint('utils/test.png', 3) print(img) img = util.uint2single(img) print(img) img = img[:448, :448] h = img.shape[0] // 4 print("resizing to", h) sf = 4 deg_fn = partial(degradation_bsrgan_variant, sf=sf) for i in range(20): print(i) img_lq = deg_fn(img) print(img_lq) img_lq_bicubic = albumentations.SmallestMaxSize(max_size=h, interpolation=cv2.INTER_CUBIC)(image=img)["image"] print(img_lq.shape) print("bicubic", img_lq_bicubic.shape) print(img_hq.shape) lq_nearest = cv2.resize(util.single2uint(img_lq), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), interpolation=0) lq_bicubic_nearest = cv2.resize(util.single2uint(img_lq_bicubic), (int(sf * img_lq.shape[1]), int(sf * img_lq.shape[0])), interpolation=0) img_concat = np.concatenate([lq_bicubic_nearest, lq_nearest, util.single2uint(img_hq)], axis=1) util.imsave(img_concat, str(i) + '.png')