import os import torch import pytorch_lightning as pl from omegaconf import OmegaConf from torch.nn import functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from copy import deepcopy from einops import rearrange from glob import glob from natsort import natsorted from ldm.modules.diffusionmodules.openaimodel import EncoderUNetModel, UNetModel from ldm.util import log_txt_as_img, default, ismap, instantiate_from_config __models__ = { 'class_label': EncoderUNetModel, 'segmentation': UNetModel } def disabled_train(self, mode=True): """Overwrite model.train with this function to make sure train/eval mode does not change anymore.""" return self class NoisyLatentImageClassifier(pl.LightningModule): def __init__(self, diffusion_path, num_classes, ckpt_path=None, pool='attention', label_key=None, diffusion_ckpt_path=None, scheduler_config=None, weight_decay=1.e-2, log_steps=10, monitor='val/loss', *args, **kwargs): super().__init__(*args, **kwargs) self.num_classes = num_classes # get latest config of diffusion model diffusion_config = natsorted(glob(os.path.join(diffusion_path, 'configs', '*-project.yaml')))[-1] self.diffusion_config = OmegaConf.load(diffusion_config).model self.diffusion_config.params.ckpt_path = diffusion_ckpt_path self.load_diffusion() self.monitor = monitor self.numd = self.diffusion_model.first_stage_model.encoder.num_resolutions - 1 self.log_time_interval = self.diffusion_model.num_timesteps // log_steps self.log_steps = log_steps self.label_key = label_key if not hasattr(self.diffusion_model, 'cond_stage_key') \ else self.diffusion_model.cond_stage_key assert self.label_key is not None, 'label_key neither in diffusion model nor in model.params' if self.label_key not in __models__: raise NotImplementedError() self.load_classifier(ckpt_path, pool) self.scheduler_config = scheduler_config self.use_scheduler = self.scheduler_config is not None self.weight_decay = weight_decay def init_from_ckpt(self, path, ignore_keys=list(), only_model=False): sd = torch.load(path, map_location="cpu") if "state_dict" in list(sd.keys()): sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("Deleting key {} from state_dict.".format(k)) del sd[k] missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict( sd, strict=False) print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys") if len(missing) > 0: print(f"Missing Keys: {missing}") if len(unexpected) > 0: print(f"Unexpected Keys: {unexpected}") def load_diffusion(self): model = instantiate_from_config(self.diffusion_config) self.diffusion_model = model.eval() self.diffusion_model.train = disabled_train for param in self.diffusion_model.parameters(): param.requires_grad = False def load_classifier(self, ckpt_path, pool): model_config = deepcopy(self.diffusion_config.params.unet_config.params) model_config.in_channels = self.diffusion_config.params.unet_config.params.out_channels model_config.out_channels = self.num_classes if self.label_key == 'class_label': model_config.pool = pool self.model = __models__[self.label_key](**model_config) if ckpt_path is not None: print('#####################################################################') print(f'load from ckpt "{ckpt_path}"') print('#####################################################################') self.init_from_ckpt(ckpt_path) @torch.no_grad() def get_x_noisy(self, x, t, noise=None): noise = default(noise, lambda: torch.randn_like(x)) continuous_sqrt_alpha_cumprod = None if self.diffusion_model.use_continuous_noise: continuous_sqrt_alpha_cumprod = self.diffusion_model.sample_continuous_noise_level(x.shape[0], t + 1) # todo: make sure t+1 is correct here return self.diffusion_model.q_sample(x_start=x, t=t, noise=noise, continuous_sqrt_alpha_cumprod=continuous_sqrt_alpha_cumprod) def forward(self, x_noisy, t, *args, **kwargs): return self.model(x_noisy, t) @torch.no_grad() def get_input(self, batch, k): x = batch[k] if len(x.shape) == 3: x = x[..., None] x = rearrange(x, 'b h w c -> b c h w') x = x.to(memory_format=torch.contiguous_format).float() return x @torch.no_grad() def get_conditioning(self, batch, k=None): if k is None: k = self.label_key assert k is not None, 'Needs to provide label key' targets = batch[k].to(self.device) if self.label_key == 'segmentation': targets = rearrange(targets, 'b h w c -> b c h w') for down in range(self.numd): h, w = targets.shape[-2:] targets = F.interpolate(targets, size=(h // 2, w // 2), mode='nearest') # targets = rearrange(targets,'b c h w -> b h w c') return targets def compute_top_k(self, logits, labels, k, reduction="mean"): _, top_ks = torch.topk(logits, k, dim=1) if reduction == "mean": return (top_ks == labels[:, None]).float().sum(dim=-1).mean().item() elif reduction == "none": return (top_ks == labels[:, None]).float().sum(dim=-1) def on_train_epoch_start(self): # save some memory self.diffusion_model.model.to('cpu') @torch.no_grad() def write_logs(self, loss, logits, targets): log_prefix = 'train' if self.training else 'val' log = {} log[f"{log_prefix}/loss"] = loss.mean() log[f"{log_prefix}/acc@1"] = self.compute_top_k( logits, targets, k=1, reduction="mean" ) log[f"{log_prefix}/acc@5"] = self.compute_top_k( logits, targets, k=5, reduction="mean" ) self.log_dict(log, prog_bar=False, logger=True, on_step=self.training, on_epoch=True) self.log('loss', log[f"{log_prefix}/loss"], prog_bar=True, logger=False) self.log('global_step', self.global_step, logger=False, on_epoch=False, prog_bar=True) lr = self.optimizers().param_groups[0]['lr'] self.log('lr_abs', lr, on_step=True, logger=True, on_epoch=False, prog_bar=True) def shared_step(self, batch, t=None): x, *_ = self.diffusion_model.get_input(batch, k=self.diffusion_model.first_stage_key) targets = self.get_conditioning(batch) if targets.dim() == 4: targets = targets.argmax(dim=1) if t is None: t = torch.randint(0, self.diffusion_model.num_timesteps, (x.shape[0],), device=self.device).long() else: t = torch.full(size=(x.shape[0],), fill_value=t, device=self.device).long() x_noisy = self.get_x_noisy(x, t) logits = self(x_noisy, t) loss = F.cross_entropy(logits, targets, reduction='none') self.write_logs(loss.detach(), logits.detach(), targets.detach()) loss = loss.mean() return loss, logits, x_noisy, targets def training_step(self, batch, batch_idx): loss, *_ = self.shared_step(batch) return loss def reset_noise_accs(self): self.noisy_acc = {t: {'acc@1': [], 'acc@5': []} for t in range(0, self.diffusion_model.num_timesteps, self.diffusion_model.log_every_t)} def on_validation_start(self): self.reset_noise_accs() @torch.no_grad() def validation_step(self, batch, batch_idx): loss, *_ = self.shared_step(batch) for t in self.noisy_acc: _, logits, _, targets = self.shared_step(batch, t) self.noisy_acc[t]['acc@1'].append(self.compute_top_k(logits, targets, k=1, reduction='mean')) self.noisy_acc[t]['acc@5'].append(self.compute_top_k(logits, targets, k=5, reduction='mean')) return loss def configure_optimizers(self): optimizer = AdamW(self.model.parameters(), lr=self.learning_rate, weight_decay=self.weight_decay) if self.use_scheduler: scheduler = instantiate_from_config(self.scheduler_config) print("Setting up LambdaLR scheduler...") scheduler = [ { 'scheduler': LambdaLR(optimizer, lr_lambda=scheduler.schedule), 'interval': 'step', 'frequency': 1 }] return [optimizer], scheduler return optimizer @torch.no_grad() def log_images(self, batch, N=8, *args, **kwargs): log = dict() x = self.get_input(batch, self.diffusion_model.first_stage_key) log['inputs'] = x y = self.get_conditioning(batch) if self.label_key == 'class_label': y = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"]) log['labels'] = y if ismap(y): log['labels'] = self.diffusion_model.to_rgb(y) for step in range(self.log_steps): current_time = step * self.log_time_interval _, logits, x_noisy, _ = self.shared_step(batch, t=current_time) log[f'inputs@t{current_time}'] = x_noisy pred = F.one_hot(logits.argmax(dim=1), num_classes=self.num_classes) pred = rearrange(pred, 'b h w c -> b c h w') log[f'pred@t{current_time}'] = self.diffusion_model.to_rgb(pred) for key in log: log[key] = log[key][:N] return log