import os import math import random import numpy as np import torch import cv2 from torchvision.utils import make_grid from datetime import datetime #import matplotlib.pyplot as plt # TODO: check with Dominik, also bsrgan.py vs bsrgan_light.py os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE" ''' # -------------------------------------------- # Kai Zhang (github: https://github.com/cszn) # 03/Mar/2019 # -------------------------------------------- # https://github.com/twhui/SRGAN-pyTorch # https://github.com/xinntao/BasicSR # -------------------------------------------- ''' IMG_EXTENSIONS = ['.jpg', '.JPG', '.jpeg', '.JPEG', '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', '.tif'] def is_image_file(filename): return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) def get_timestamp(): return datetime.now().strftime('%y%m%d-%H%M%S') def imshow(x, title=None, cbar=False, figsize=None): plt.figure(figsize=figsize) plt.imshow(np.squeeze(x), interpolation='nearest', cmap='gray') if title: plt.title(title) if cbar: plt.colorbar() plt.show() def surf(Z, cmap='rainbow', figsize=None): plt.figure(figsize=figsize) ax3 = plt.axes(projection='3d') w, h = Z.shape[:2] xx = np.arange(0,w,1) yy = np.arange(0,h,1) X, Y = np.meshgrid(xx, yy) ax3.plot_surface(X,Y,Z,cmap=cmap) #ax3.contour(X,Y,Z, zdim='z',offset=-2,cmap=cmap) plt.show() ''' # -------------------------------------------- # get image pathes # -------------------------------------------- ''' def get_image_paths(dataroot): paths = None # return None if dataroot is None if dataroot is not None: paths = sorted(_get_paths_from_images(dataroot)) return paths def _get_paths_from_images(path): assert os.path.isdir(path), '{:s} is not a valid directory'.format(path) images = [] for dirpath, _, fnames in sorted(os.walk(path)): for fname in sorted(fnames): if is_image_file(fname): img_path = os.path.join(dirpath, fname) images.append(img_path) assert images, '{:s} has no valid image file'.format(path) return images ''' # -------------------------------------------- # split large images into small images # -------------------------------------------- ''' def patches_from_image(img, p_size=512, p_overlap=64, p_max=800): w, h = img.shape[:2] patches = [] if w > p_max and h > p_max: w1 = list(np.arange(0, w-p_size, p_size-p_overlap, dtype=np.int)) h1 = list(np.arange(0, h-p_size, p_size-p_overlap, dtype=np.int)) w1.append(w-p_size) h1.append(h-p_size) # print(w1) # print(h1) for i in w1: for j in h1: patches.append(img[i:i+p_size, j:j+p_size,:]) else: patches.append(img) return patches def imssave(imgs, img_path): """ imgs: list, N images of size WxHxC """ img_name, ext = os.path.splitext(os.path.basename(img_path)) for i, img in enumerate(imgs): if img.ndim == 3: img = img[:, :, [2, 1, 0]] new_path = os.path.join(os.path.dirname(img_path), img_name+str('_s{:04d}'.format(i))+'.png') cv2.imwrite(new_path, img) def split_imageset(original_dataroot, taget_dataroot, n_channels=3, p_size=800, p_overlap=96, p_max=1000): """ split the large images from original_dataroot into small overlapped images with size (p_size)x(p_size), and save them into taget_dataroot; only the images with larger size than (p_max)x(p_max) will be splitted. Args: original_dataroot: taget_dataroot: p_size: size of small images p_overlap: patch size in training is a good choice p_max: images with smaller size than (p_max)x(p_max) keep unchanged. """ paths = get_image_paths(original_dataroot) for img_path in paths: # img_name, ext = os.path.splitext(os.path.basename(img_path)) img = imread_uint(img_path, n_channels=n_channels) patches = patches_from_image(img, p_size, p_overlap, p_max) imssave(patches, os.path.join(taget_dataroot,os.path.basename(img_path))) #if original_dataroot == taget_dataroot: #del img_path ''' # -------------------------------------------- # makedir # -------------------------------------------- ''' def mkdir(path): if not os.path.exists(path): os.makedirs(path) def mkdirs(paths): if isinstance(paths, str): mkdir(paths) else: for path in paths: mkdir(path) def mkdir_and_rename(path): if os.path.exists(path): new_name = path + '_archived_' + get_timestamp() print('Path already exists. Rename it to [{:s}]'.format(new_name)) os.rename(path, new_name) os.makedirs(path) ''' # -------------------------------------------- # read image from path # opencv is fast, but read BGR numpy image # -------------------------------------------- ''' # -------------------------------------------- # get uint8 image of size HxWxn_channles (RGB) # -------------------------------------------- def imread_uint(path, n_channels=3): # input: path # output: HxWx3(RGB or GGG), or HxWx1 (G) if n_channels == 1: img = cv2.imread(path, 0) # cv2.IMREAD_GRAYSCALE img = np.expand_dims(img, axis=2) # HxWx1 elif n_channels == 3: img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # BGR or G if img.ndim == 2: img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB) # GGG else: img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) # RGB return img # -------------------------------------------- # matlab's imwrite # -------------------------------------------- def imsave(img, img_path): img = np.squeeze(img) if img.ndim == 3: img = img[:, :, [2, 1, 0]] cv2.imwrite(img_path, img) def imwrite(img, img_path): img = np.squeeze(img) if img.ndim == 3: img = img[:, :, [2, 1, 0]] cv2.imwrite(img_path, img) # -------------------------------------------- # get single image of size HxWxn_channles (BGR) # -------------------------------------------- def read_img(path): # read image by cv2 # return: Numpy float32, HWC, BGR, [0,1] img = cv2.imread(path, cv2.IMREAD_UNCHANGED) # cv2.IMREAD_GRAYSCALE img = img.astype(np.float32) / 255. if img.ndim == 2: img = np.expand_dims(img, axis=2) # some images have 4 channels if img.shape[2] > 3: img = img[:, :, :3] return img ''' # -------------------------------------------- # image format conversion # -------------------------------------------- # numpy(single) <---> numpy(unit) # numpy(single) <---> tensor # numpy(unit) <---> tensor # -------------------------------------------- ''' # -------------------------------------------- # numpy(single) [0, 1] <---> numpy(unit) # -------------------------------------------- def uint2single(img): return np.float32(img/255.) def single2uint(img): return np.uint8((img.clip(0, 1)*255.).round()) def uint162single(img): return np.float32(img/65535.) def single2uint16(img): return np.uint16((img.clip(0, 1)*65535.).round()) # -------------------------------------------- # numpy(unit) (HxWxC or HxW) <---> tensor # -------------------------------------------- # convert uint to 4-dimensional torch tensor def uint2tensor4(img): if img.ndim == 2: img = np.expand_dims(img, axis=2) return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.).unsqueeze(0) # convert uint to 3-dimensional torch tensor def uint2tensor3(img): if img.ndim == 2: img = np.expand_dims(img, axis=2) return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().div(255.) # convert 2/3/4-dimensional torch tensor to uint def tensor2uint(img): img = img.data.squeeze().float().clamp_(0, 1).cpu().numpy() if img.ndim == 3: img = np.transpose(img, (1, 2, 0)) return np.uint8((img*255.0).round()) # -------------------------------------------- # numpy(single) (HxWxC) <---> tensor # -------------------------------------------- # convert single (HxWxC) to 3-dimensional torch tensor def single2tensor3(img): return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float() # convert single (HxWxC) to 4-dimensional torch tensor def single2tensor4(img): return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1).float().unsqueeze(0) # convert torch tensor to single def tensor2single(img): img = img.data.squeeze().float().cpu().numpy() if img.ndim == 3: img = np.transpose(img, (1, 2, 0)) return img # convert torch tensor to single def tensor2single3(img): img = img.data.squeeze().float().cpu().numpy() if img.ndim == 3: img = np.transpose(img, (1, 2, 0)) elif img.ndim == 2: img = np.expand_dims(img, axis=2) return img def single2tensor5(img): return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float().unsqueeze(0) def single32tensor5(img): return torch.from_numpy(np.ascontiguousarray(img)).float().unsqueeze(0).unsqueeze(0) def single42tensor4(img): return torch.from_numpy(np.ascontiguousarray(img)).permute(2, 0, 1, 3).float() # from skimage.io import imread, imsave def tensor2img(tensor, out_type=np.uint8, min_max=(0, 1)): ''' Converts a torch Tensor into an image Numpy array of BGR channel order Input: 4D(B,(3/1),H,W), 3D(C,H,W), or 2D(H,W), any range, RGB channel order Output: 3D(H,W,C) or 2D(H,W), [0,255], np.uint8 (default) ''' tensor = tensor.squeeze().float().cpu().clamp_(*min_max) # squeeze first, then clamp tensor = (tensor - min_max[0]) / (min_max[1] - min_max[0]) # to range [0,1] n_dim = tensor.dim() if n_dim == 4: n_img = len(tensor) img_np = make_grid(tensor, nrow=int(math.sqrt(n_img)), normalize=False).numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR elif n_dim == 3: img_np = tensor.numpy() img_np = np.transpose(img_np[[2, 1, 0], :, :], (1, 2, 0)) # HWC, BGR elif n_dim == 2: img_np = tensor.numpy() else: raise TypeError( 'Only support 4D, 3D and 2D tensor. But received with dimension: {:d}'.format(n_dim)) if out_type == np.uint8: img_np = (img_np * 255.0).round() # Important. Unlike matlab, numpy.unit8() WILL NOT round by default. return img_np.astype(out_type) ''' # -------------------------------------------- # Augmentation, flipe and/or rotate # -------------------------------------------- # The following two are enough. # (1) augmet_img: numpy image of WxHxC or WxH # (2) augment_img_tensor4: tensor image 1xCxWxH # -------------------------------------------- ''' def augment_img(img, mode=0): '''Kai Zhang (github: https://github.com/cszn) ''' if mode == 0: return img elif mode == 1: return np.flipud(np.rot90(img)) elif mode == 2: return np.flipud(img) elif mode == 3: return np.rot90(img, k=3) elif mode == 4: return np.flipud(np.rot90(img, k=2)) elif mode == 5: return np.rot90(img) elif mode == 6: return np.rot90(img, k=2) elif mode == 7: return np.flipud(np.rot90(img, k=3)) def augment_img_tensor4(img, mode=0): '''Kai Zhang (github: https://github.com/cszn) ''' if mode == 0: return img elif mode == 1: return img.rot90(1, [2, 3]).flip([2]) elif mode == 2: return img.flip([2]) elif mode == 3: return img.rot90(3, [2, 3]) elif mode == 4: return img.rot90(2, [2, 3]).flip([2]) elif mode == 5: return img.rot90(1, [2, 3]) elif mode == 6: return img.rot90(2, [2, 3]) elif mode == 7: return img.rot90(3, [2, 3]).flip([2]) def augment_img_tensor(img, mode=0): '''Kai Zhang (github: https://github.com/cszn) ''' img_size = img.size() img_np = img.data.cpu().numpy() if len(img_size) == 3: img_np = np.transpose(img_np, (1, 2, 0)) elif len(img_size) == 4: img_np = np.transpose(img_np, (2, 3, 1, 0)) img_np = augment_img(img_np, mode=mode) img_tensor = torch.from_numpy(np.ascontiguousarray(img_np)) if len(img_size) == 3: img_tensor = img_tensor.permute(2, 0, 1) elif len(img_size) == 4: img_tensor = img_tensor.permute(3, 2, 0, 1) return img_tensor.type_as(img) def augment_img_np3(img, mode=0): if mode == 0: return img elif mode == 1: return img.transpose(1, 0, 2) elif mode == 2: return img[::-1, :, :] elif mode == 3: img = img[::-1, :, :] img = img.transpose(1, 0, 2) return img elif mode == 4: return img[:, ::-1, :] elif mode == 5: img = img[:, ::-1, :] img = img.transpose(1, 0, 2) return img elif mode == 6: img = img[:, ::-1, :] img = img[::-1, :, :] return img elif mode == 7: img = img[:, ::-1, :] img = img[::-1, :, :] img = img.transpose(1, 0, 2) return img def augment_imgs(img_list, hflip=True, rot=True): # horizontal flip OR rotate hflip = hflip and random.random() < 0.5 vflip = rot and random.random() < 0.5 rot90 = rot and random.random() < 0.5 def _augment(img): if hflip: img = img[:, ::-1, :] if vflip: img = img[::-1, :, :] if rot90: img = img.transpose(1, 0, 2) return img return [_augment(img) for img in img_list] ''' # -------------------------------------------- # modcrop and shave # -------------------------------------------- ''' def modcrop(img_in, scale): # img_in: Numpy, HWC or HW img = np.copy(img_in) if img.ndim == 2: H, W = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r] elif img.ndim == 3: H, W, C = img.shape H_r, W_r = H % scale, W % scale img = img[:H - H_r, :W - W_r, :] else: raise ValueError('Wrong img ndim: [{:d}].'.format(img.ndim)) return img def shave(img_in, border=0): # img_in: Numpy, HWC or HW img = np.copy(img_in) h, w = img.shape[:2] img = img[border:h-border, border:w-border] return img ''' # -------------------------------------------- # image processing process on numpy image # channel_convert(in_c, tar_type, img_list): # rgb2ycbcr(img, only_y=True): # bgr2ycbcr(img, only_y=True): # ycbcr2rgb(img): # -------------------------------------------- ''' def rgb2ycbcr(img, only_y=True): '''same as matlab rgb2ycbcr only_y: only return Y channel Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img.astype(np.float32) if in_img_type != np.uint8: img *= 255. # convert if only_y: rlt = np.dot(img, [65.481, 128.553, 24.966]) / 255.0 + 16.0 else: rlt = np.matmul(img, [[65.481, -37.797, 112.0], [128.553, -74.203, -93.786], [24.966, 112.0, -18.214]]) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def ycbcr2rgb(img): '''same as matlab ycbcr2rgb Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img.astype(np.float32) if in_img_type != np.uint8: img *= 255. # convert rlt = np.matmul(img, [[0.00456621, 0.00456621, 0.00456621], [0, -0.00153632, 0.00791071], [0.00625893, -0.00318811, 0]]) * 255.0 + [-222.921, 135.576, -276.836] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def bgr2ycbcr(img, only_y=True): '''bgr version of rgb2ycbcr only_y: only return Y channel Input: uint8, [0, 255] float, [0, 1] ''' in_img_type = img.dtype img.astype(np.float32) if in_img_type != np.uint8: img *= 255. # convert if only_y: rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0 else: rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786], [65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128] if in_img_type == np.uint8: rlt = rlt.round() else: rlt /= 255. return rlt.astype(in_img_type) def channel_convert(in_c, tar_type, img_list): # conversion among BGR, gray and y if in_c == 3 and tar_type == 'gray': # BGR to gray gray_list = [cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) for img in img_list] return [np.expand_dims(img, axis=2) for img in gray_list] elif in_c == 3 and tar_type == 'y': # BGR to y y_list = [bgr2ycbcr(img, only_y=True) for img in img_list] return [np.expand_dims(img, axis=2) for img in y_list] elif in_c == 1 and tar_type == 'RGB': # gray/y to BGR return [cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) for img in img_list] else: return img_list ''' # -------------------------------------------- # metric, PSNR and SSIM # -------------------------------------------- ''' # -------------------------------------------- # PSNR # -------------------------------------------- def calculate_psnr(img1, img2, border=0): # img1 and img2 have range [0, 255] #img1 = img1.squeeze() #img2 = img2.squeeze() if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') h, w = img1.shape[:2] img1 = img1[border:h-border, border:w-border] img2 = img2[border:h-border, border:w-border] img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) mse = np.mean((img1 - img2)**2) if mse == 0: return float('inf') return 20 * math.log10(255.0 / math.sqrt(mse)) # -------------------------------------------- # SSIM # -------------------------------------------- def calculate_ssim(img1, img2, border=0): '''calculate SSIM the same outputs as MATLAB's img1, img2: [0, 255] ''' #img1 = img1.squeeze() #img2 = img2.squeeze() if not img1.shape == img2.shape: raise ValueError('Input images must have the same dimensions.') h, w = img1.shape[:2] img1 = img1[border:h-border, border:w-border] img2 = img2[border:h-border, border:w-border] if img1.ndim == 2: return ssim(img1, img2) elif img1.ndim == 3: if img1.shape[2] == 3: ssims = [] for i in range(3): ssims.append(ssim(img1[:,:,i], img2[:,:,i])) return np.array(ssims).mean() elif img1.shape[2] == 1: return ssim(np.squeeze(img1), np.squeeze(img2)) else: raise ValueError('Wrong input image dimensions.') def ssim(img1, img2): C1 = (0.01 * 255)**2 C2 = (0.03 * 255)**2 img1 = img1.astype(np.float64) img2 = img2.astype(np.float64) kernel = cv2.getGaussianKernel(11, 1.5) window = np.outer(kernel, kernel.transpose()) mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5] mu1_sq = mu1**2 mu2_sq = mu2**2 mu1_mu2 = mu1 * mu2 sigma1_sq = cv2.filter2D(img1**2, -1, window)[5:-5, 5:-5] - mu1_sq sigma2_sq = cv2.filter2D(img2**2, -1, window)[5:-5, 5:-5] - mu2_sq sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2 ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) * (sigma1_sq + sigma2_sq + C2)) return ssim_map.mean() ''' # -------------------------------------------- # matlab's bicubic imresize (numpy and torch) [0, 1] # -------------------------------------------- ''' # matlab 'imresize' function, now only support 'bicubic' def cubic(x): absx = torch.abs(x) absx2 = absx**2 absx3 = absx**3 return (1.5*absx3 - 2.5*absx2 + 1) * ((absx <= 1).type_as(absx)) + \ (-0.5*absx3 + 2.5*absx2 - 4*absx + 2) * (((absx > 1)*(absx <= 2)).type_as(absx)) def calculate_weights_indices(in_length, out_length, scale, kernel, kernel_width, antialiasing): if (scale < 1) and (antialiasing): # Use a modified kernel to simultaneously interpolate and antialias- larger kernel width kernel_width = kernel_width / scale # Output-space coordinates x = torch.linspace(1, out_length, out_length) # Input-space coordinates. Calculate the inverse mapping such that 0.5 # in output space maps to 0.5 in input space, and 0.5+scale in output # space maps to 1.5 in input space. u = x / scale + 0.5 * (1 - 1 / scale) # What is the left-most pixel that can be involved in the computation? left = torch.floor(u - kernel_width / 2) # What is the maximum number of pixels that can be involved in the # computation? Note: it's OK to use an extra pixel here; if the # corresponding weights are all zero, it will be eliminated at the end # of this function. P = math.ceil(kernel_width) + 2 # The indices of the input pixels involved in computing the k-th output # pixel are in row k of the indices matrix. indices = left.view(out_length, 1).expand(out_length, P) + torch.linspace(0, P - 1, P).view( 1, P).expand(out_length, P) # The weights used to compute the k-th output pixel are in row k of the # weights matrix. distance_to_center = u.view(out_length, 1).expand(out_length, P) - indices # apply cubic kernel if (scale < 1) and (antialiasing): weights = scale * cubic(distance_to_center * scale) else: weights = cubic(distance_to_center) # Normalize the weights matrix so that each row sums to 1. weights_sum = torch.sum(weights, 1).view(out_length, 1) weights = weights / weights_sum.expand(out_length, P) # If a column in weights is all zero, get rid of it. only consider the first and last column. weights_zero_tmp = torch.sum((weights == 0), 0) if not math.isclose(weights_zero_tmp[0], 0, rel_tol=1e-6): indices = indices.narrow(1, 1, P - 2) weights = weights.narrow(1, 1, P - 2) if not math.isclose(weights_zero_tmp[-1], 0, rel_tol=1e-6): indices = indices.narrow(1, 0, P - 2) weights = weights.narrow(1, 0, P - 2) weights = weights.contiguous() indices = indices.contiguous() sym_len_s = -indices.min() + 1 sym_len_e = indices.max() - in_length indices = indices + sym_len_s - 1 return weights, indices, int(sym_len_s), int(sym_len_e) # -------------------------------------------- # imresize for tensor image [0, 1] # -------------------------------------------- def imresize(img, scale, antialiasing=True): # Now the scale should be the same for H and W # input: img: pytorch tensor, CHW or HW [0,1] # output: CHW or HW [0,1] w/o round need_squeeze = True if img.dim() == 2 else False if need_squeeze: img.unsqueeze_(0) in_C, in_H, in_W = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) kernel_width = 4 kernel = 'cubic' # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_C, in_H + sym_len_Hs + sym_len_He, in_W) img_aug.narrow(1, sym_len_Hs, in_H).copy_(img) sym_patch = img[:, :sym_len_Hs, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[:, -sym_len_He:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) img_aug.narrow(1, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(in_C, out_H, in_W) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) for j in range(out_C): out_1[j, i, :] = img_aug[j, idx:idx + kernel_width, :].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(in_C, out_H, in_W + sym_len_Ws + sym_len_We) out_1_aug.narrow(2, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :, :sym_len_Ws] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, :, -sym_len_We:] inv_idx = torch.arange(sym_patch.size(2) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(2, inv_idx) out_1_aug.narrow(2, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(in_C, out_H, out_W) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) for j in range(out_C): out_2[j, :, i] = out_1_aug[j, :, idx:idx + kernel_width].mv(weights_W[i]) if need_squeeze: out_2.squeeze_() return out_2 # -------------------------------------------- # imresize for numpy image [0, 1] # -------------------------------------------- def imresize_np(img, scale, antialiasing=True): # Now the scale should be the same for H and W # input: img: Numpy, HWC or HW [0,1] # output: HWC or HW [0,1] w/o round img = torch.from_numpy(img) need_squeeze = True if img.dim() == 2 else False if need_squeeze: img.unsqueeze_(2) in_H, in_W, in_C = img.size() out_C, out_H, out_W = in_C, math.ceil(in_H * scale), math.ceil(in_W * scale) kernel_width = 4 kernel = 'cubic' # Return the desired dimension order for performing the resize. The # strategy is to perform the resize first along the dimension with the # smallest scale factor. # Now we do not support this. # get weights and indices weights_H, indices_H, sym_len_Hs, sym_len_He = calculate_weights_indices( in_H, out_H, scale, kernel, kernel_width, antialiasing) weights_W, indices_W, sym_len_Ws, sym_len_We = calculate_weights_indices( in_W, out_W, scale, kernel, kernel_width, antialiasing) # process H dimension # symmetric copying img_aug = torch.FloatTensor(in_H + sym_len_Hs + sym_len_He, in_W, in_C) img_aug.narrow(0, sym_len_Hs, in_H).copy_(img) sym_patch = img[:sym_len_Hs, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, 0, sym_len_Hs).copy_(sym_patch_inv) sym_patch = img[-sym_len_He:, :, :] inv_idx = torch.arange(sym_patch.size(0) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(0, inv_idx) img_aug.narrow(0, sym_len_Hs + in_H, sym_len_He).copy_(sym_patch_inv) out_1 = torch.FloatTensor(out_H, in_W, in_C) kernel_width = weights_H.size(1) for i in range(out_H): idx = int(indices_H[i][0]) for j in range(out_C): out_1[i, :, j] = img_aug[idx:idx + kernel_width, :, j].transpose(0, 1).mv(weights_H[i]) # process W dimension # symmetric copying out_1_aug = torch.FloatTensor(out_H, in_W + sym_len_Ws + sym_len_We, in_C) out_1_aug.narrow(1, sym_len_Ws, in_W).copy_(out_1) sym_patch = out_1[:, :sym_len_Ws, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, 0, sym_len_Ws).copy_(sym_patch_inv) sym_patch = out_1[:, -sym_len_We:, :] inv_idx = torch.arange(sym_patch.size(1) - 1, -1, -1).long() sym_patch_inv = sym_patch.index_select(1, inv_idx) out_1_aug.narrow(1, sym_len_Ws + in_W, sym_len_We).copy_(sym_patch_inv) out_2 = torch.FloatTensor(out_H, out_W, in_C) kernel_width = weights_W.size(1) for i in range(out_W): idx = int(indices_W[i][0]) for j in range(out_C): out_2[:, i, j] = out_1_aug[:, idx:idx + kernel_width, j].mv(weights_W[i]) if need_squeeze: out_2.squeeze_() return out_2.numpy() if __name__ == '__main__': print('---') # img = imread_uint('test.bmp', 3) # img = uint2single(img) # img_bicubic = imresize_np(img, 1/4)