#!/bin/bash #SBATCH --partition=compute-od-gpu #SBATCH --job-name=stable-diffusion-v1-edgeinpainting #SBATCH --nodes 24 #SBATCH --ntasks-per-node 1 #SBATCH --cpus-per-gpu=4 #SBATCH --gres=gpu:8 #SBATCH --exclusive #SBATCH --output=%x_%j.out #SBATCH --comment "Key=Monitoring,Value=ON" #SBATCH --no-requeue module load intelmpi source /opt/intel/mpi/latest/env/vars.sh export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH export NCCL_PROTO=simple export PATH=/opt/amazon/efa/bin:$PATH export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so" export FI_EFA_FORK_SAFE=1 export FI_LOG_LEVEL=1 export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn export NCCL_DEBUG=info export PYTHONFAULTHANDLER=1 export CUDA_LAUNCH_BLOCKING=0 export OMPI_MCA_mtl_base_verbose=1 export FI_EFA_ENABLE_SHM_TRANSFER=0 export FI_PROVIDER=efa export FI_EFA_TX_MIN_CREDITS=64 export NCCL_TREE_THRESHOLD=0 # sent to sub script export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"` export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1) export MASTER_PORT=12802 export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l` export WORLD_SIZE=$COUNT_NODE echo go $COUNT_NODE echo $HOSTNAMES echo $WORLD_SIZE mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v1_edgeinpainting/launcher.sh