model: base_learning_rate: 1.0e-06 target: ldm.models.diffusion.ddpm.LatentDiffusion params: linear_start: 0.0015 linear_end: 0.0195 num_timesteps_cond: 1 log_every_t: 200 timesteps: 1000 first_stage_key: image cond_stage_key: class_label image_size: 32 channels: 4 cond_stage_trainable: true conditioning_key: crossattn monitor: val/loss_simple_ema unet_config: target: ldm.modules.diffusionmodules.openaimodel.UNetModel params: image_size: 32 in_channels: 4 out_channels: 4 model_channels: 256 attention_resolutions: #note: this isn\t actually the resolution but # the downsampling factor, i.e. this corresnponds to # attention on spatial resolution 8,16,32, as the # spatial reolution of the latents is 32 for f8 - 4 - 2 - 1 num_res_blocks: 2 channel_mult: - 1 - 2 - 4 num_head_channels: 32 use_spatial_transformer: true transformer_depth: 1 context_dim: 512 first_stage_config: target: ldm.models.autoencoder.VQModelInterface params: embed_dim: 4 n_embed: 16384 ckpt_path: configs/first_stage_models/vq-f8/model.yaml ddconfig: double_z: false z_channels: 4 resolution: 256 in_channels: 3 out_ch: 3 ch: 128 ch_mult: - 1 - 2 - 2 - 4 num_res_blocks: 2 attn_resolutions: - 32 dropout: 0.0 lossconfig: target: torch.nn.Identity cond_stage_config: target: ldm.modules.encoders.modules.ClassEmbedder params: embed_dim: 512 key: class_label data: target: main.DataModuleFromConfig params: batch_size: 64 num_workers: 12 wrap: false train: target: ldm.data.imagenet.ImageNetTrain params: config: size: 256 validation: target: ldm.data.imagenet.ImageNetValidation params: config: size: 256 lightning: callbacks: image_logger: target: main.ImageLogger params: batch_frequency: 5000 max_images: 8 increase_log_steps: False trainer: benchmark: True