add autoencoder training details, arxiv link and figures

This commit is contained in:
rromb 2021-12-22 11:16:26 +01:00
parent 32a9661b4e
commit f8b4a07105
3 changed files with 45 additions and 1 deletions

View file

@ -1,4 +1,23 @@
# Latent Diffusion Models # Latent Diffusion Models
[arXiv](https://arxiv.org/abs/2112.10752) | [BibTeX](#bibtex)
<p align="center">
<img src=assets/results.gif />
</p>
[**High-Resolution Image Synthesis with Latent Diffusion Models**](https://arxiv.org/abs/2112.10752)<br/>
[Robin Rombach](https://github.com/rromb)\*,
[Andreas Blattmann](https://github.com/ablattmann)\*,
[Dominik Lorenz](https://github.com/qp-qp)\,
[Patrick Esser](https://github.com/pesser),
[Björn Ommer](https://hci.iwr.uni-heidelberg.de/Staff/bommer)<br/>
\* equal contribution
<p align="center">
<img src=assets/modelfigure.png />
</p>
## Requirements ## Requirements
A suitable [conda](https://conda.io/) environment named `ldm` can be created A suitable [conda](https://conda.io/) environment named `ldm` can be created
@ -31,12 +50,24 @@ conda activate ldm
### Get the models ### Get the models
Running the following script downloads und extracts all available pretrained autoencoding models. Running the following script downloads und extracts all available pretrained autoencoding models.
```shell script ```shell script
bash scripts/download_first_stages.sh bash scripts/download_first_stages.sh
``` ```
The first stage models can then be found in `models/first_stage_models/<model_spec>` The first stage models can then be found in `models/first_stage_models/<model_spec>`
### Training autoencoder models
Configs for training a KL-regularized autoencoder on ImageNet are provided at `configs/autoencoder`.
Training can be started by running
```
CUDA_VISIBLE_DEVICES=<GPU_ID> python main.py --base configs/autoencoder/<config_spec> -t --gpus 0,
```
where `config_spec` is one of {`autoencoder_kl_8x8x64.yaml`(f=32, d=64), `autoencoder_kl_16x16x16.yaml`(f=16, d=16),
`autoencoder_kl_32x32x4`(f=8, d=4), `autoencoder_kl_64x64x3`(f=4, d=3)}.
For training VQ-regularized models, see the [taming-transformers](https://github.com/CompVis/taming-transformers)
repository.
## Pretrained LDMs ## Pretrained LDMs
| Datset | Task | Model | FID | IS | Prec | Recall | Link | Comments | Datset | Task | Model | FID | IS | Prec | Recall | Link | Comments
@ -102,4 +133,17 @@ Thanks for open-sourcing!
- The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories). - The implementation of the transformer encoder is from [x-transformers](https://github.com/lucidrains/x-transformers) by [lucidrains](https://github.com/lucidrains?tab=repositories).
## BibTeX
```
@misc{rombach2021highresolution,
title={High-Resolution Image Synthesis with Latent Diffusion Models},
author={Robin Rombach and Andreas Blattmann and Dominik Lorenz and Patrick Esser and Björn Ommer},
year={2021},
eprint={2112.10752},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```

BIN
assets/modelfigure.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 72 KiB

BIN
assets/results.gif Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.4 MiB