support lr creation in laion
This commit is contained in:
parent
c5a39aff8a
commit
c89452ef9a
2 changed files with 201 additions and 2 deletions
|
@ -0,0 +1,166 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
|
||||
params:
|
||||
low_scale_key: "lr"
|
||||
linear_start: 0.001
|
||||
linear_end: 0.015
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 16
|
||||
cond_stage_trainable: false
|
||||
conditioning_key: "hybrid-adm"
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.22765929 # magic number
|
||||
|
||||
low_scale_config:
|
||||
target: ldm.modules.encoders.modules.LowScaleEncoder
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
timesteps: 1000
|
||||
max_noise_level: 250
|
||||
output_size: 64
|
||||
model_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ ]
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
num_classes: 1000 # timesteps for noise conditoining
|
||||
image_size: 64 # not really needed
|
||||
in_channels: 20
|
||||
out_channels: 16
|
||||
model_channels: 32 # TODO: more
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 16
|
||||
monitor: val/rec_loss
|
||||
ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
|
||||
ddconfig:
|
||||
double_z: True
|
||||
z_channels: 16
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ 16 ]
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
|
||||
|
||||
data:
|
||||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
|
||||
batch_size: 4
|
||||
num_workers: 1
|
||||
train:
|
||||
shards: '{00000..17279}.tar -'
|
||||
shuffle: 10000
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 1024
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 1024
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddLR
|
||||
params:
|
||||
factor: 4
|
||||
|
||||
# NOTE use enough shards to avoid empty validation loops in workers
|
||||
validation:
|
||||
shards: '{17280..17535}.tar -'
|
||||
shuffle: 0
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 1024
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.CenterCrop
|
||||
params:
|
||||
size: 1024
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddLR
|
||||
params:
|
||||
factor: 4
|
||||
|
||||
lightning:
|
||||
callbacks:
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
params:
|
||||
batch_frequency: 10
|
||||
max_images: 4
|
||||
increase_log_steps: False
|
||||
log_first_step: False
|
||||
log_images_kwargs:
|
||||
use_ema_scope: False
|
||||
inpaint: False
|
||||
plot_progressive_rows: False
|
||||
plot_diffusion_rows: False
|
||||
N: 4
|
||||
unconditional_guidance_scale: 3.0
|
||||
unconditional_guidance_label: [""]
|
||||
|
||||
trainer:
|
||||
benchmark: True
|
||||
val_check_interval: 5000000 # really sorry
|
||||
num_sanity_val_steps: 0
|
||||
accumulate_grad_batches: 1
|
|
@ -138,6 +138,11 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
|
|||
img_key = dataset_config.get('image_key', 'jpeg')
|
||||
transform_dict.update({img_key: image_transforms})
|
||||
|
||||
if 'postprocess' in dataset_config:
|
||||
postprocess = instantiate_from_config(dataset_config['postprocess'])
|
||||
else:
|
||||
postprocess = None
|
||||
|
||||
shuffle = dataset_config.get('shuffle', 0)
|
||||
shardshuffle = shuffle > 0
|
||||
|
||||
|
@ -156,8 +161,12 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
|
|||
.decode('pil', handler=wds.warn_and_continue)
|
||||
.select(self.filter_size)
|
||||
.map_dict(**transform_dict, handler=wds.warn_and_continue)
|
||||
)
|
||||
if postprocess is not None:
|
||||
dset = dset.map(postprocess)
|
||||
dset = (dset
|
||||
.batched(self.batch_size, partial=False,
|
||||
collation_fn=dict_collation_fn)
|
||||
collation_fn=dict_collation_fn)
|
||||
)
|
||||
|
||||
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
|
||||
|
@ -189,6 +198,29 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
|
|||
return self.make_loader(self.test, train=False)
|
||||
|
||||
|
||||
from ldm.modules.image_degradation import degradation_fn_bsr_light
|
||||
|
||||
class AddLR(object):
|
||||
def __init__(self, factor):
|
||||
self.factor = factor
|
||||
|
||||
def pt2np(self, x):
|
||||
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
|
||||
return x
|
||||
|
||||
def np2pt(self, x):
|
||||
x = torch.from_numpy(x)/127.5-1.0
|
||||
return x
|
||||
|
||||
def __call__(self, sample):
|
||||
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
||||
x = self.pt2np(sample['jpg'])
|
||||
x = degradation_fn_bsr_light(x, sf=self.factor)['image']
|
||||
x = self.np2pt(x)
|
||||
sample['lr'] = x
|
||||
return sample
|
||||
|
||||
|
||||
def example00():
|
||||
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
||||
dataset = wds.WebDataset(url)
|
||||
|
@ -270,7 +302,8 @@ if __name__ == "__main__":
|
|||
from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
|
||||
from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
|
||||
|
||||
config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
|
||||
#config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
|
||||
config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
|
||||
datamod = WebDataModuleFromConfig(**config["data"]["params"])
|
||||
dataloader = datamod.train_dataloader()
|
||||
|
||||
|
|
Loading…
Reference in a new issue