support lr creation in laion

This commit is contained in:
Patrick Esser 2022-06-12 23:26:31 +00:00 committed by root
parent c5a39aff8a
commit c89452ef9a
2 changed files with 201 additions and 2 deletions

View file

@ -0,0 +1,166 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
params:
low_scale_key: "lr"
linear_start: 0.001
linear_end: 0.015
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 16
cond_stage_trainable: false
conditioning_key: "hybrid-adm"
monitor: val/loss_simple_ema
scale_factor: 0.22765929 # magic number
low_scale_config:
target: ldm.modules.encoders.modules.LowScaleEncoder
params:
linear_start: 0.00085
linear_end: 0.0120
timesteps: 1000
max_noise_level: 250
output_size: 64
model_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: [ ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
num_classes: 1000 # timesteps for noise conditoining
image_size: 64 # not really needed
in_channels: 20
out_channels: 16
model_channels: 32 # TODO: more
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 16
monitor: val/rec_loss
ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
ddconfig:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [ 16 ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
batch_size: 4
num_workers: 1
train:
shards: '{00000..17279}.tar -'
shuffle: 10000
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 1024
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 1024
postprocess:
target: ldm.data.laion.AddLR
params:
factor: 4
# NOTE use enough shards to avoid empty validation loops in workers
validation:
shards: '{17280..17535}.tar -'
shuffle: 0
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 1024
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 1024
postprocess:
target: ldm.data.laion.AddLR
params:
factor: 4
lightning:
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 10
max_images: 4
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 4
unconditional_guidance_scale: 3.0
unconditional_guidance_label: [""]
trainer:
benchmark: True
val_check_interval: 5000000 # really sorry
num_sanity_val_steps: 0
accumulate_grad_batches: 1

View file

@ -138,6 +138,11 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
img_key = dataset_config.get('image_key', 'jpeg')
transform_dict.update({img_key: image_transforms})
if 'postprocess' in dataset_config:
postprocess = instantiate_from_config(dataset_config['postprocess'])
else:
postprocess = None
shuffle = dataset_config.get('shuffle', 0)
shardshuffle = shuffle > 0
@ -156,6 +161,10 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
.decode('pil', handler=wds.warn_and_continue)
.select(self.filter_size)
.map_dict(**transform_dict, handler=wds.warn_and_continue)
)
if postprocess is not None:
dset = dset.map(postprocess)
dset = (dset
.batched(self.batch_size, partial=False,
collation_fn=dict_collation_fn)
)
@ -189,6 +198,29 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
return self.make_loader(self.test, train=False)
from ldm.modules.image_degradation import degradation_fn_bsr_light
class AddLR(object):
def __init__(self, factor):
self.factor = factor
def pt2np(self, x):
x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
return x
def np2pt(self, x):
x = torch.from_numpy(x)/127.5-1.0
return x
def __call__(self, sample):
# sample['jpg'] is tensor hwc in [-1, 1] at this point
x = self.pt2np(sample['jpg'])
x = degradation_fn_bsr_light(x, sf=self.factor)['image']
x = self.np2pt(x)
sample['lr'] = x
return sample
def example00():
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
dataset = wds.WebDataset(url)
@ -270,7 +302,8 @@ if __name__ == "__main__":
from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
#config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
datamod = WebDataModuleFromConfig(**config["data"]["params"])
dataloader = datamod.train_dataloader()