support lr creation in laion
This commit is contained in:
		
							parent
							
								
									c5a39aff8a
								
							
						
					
					
						commit
						c89452ef9a
					
				
					 2 changed files with 201 additions and 2 deletions
				
			
		| 
						 | 
					@ -0,0 +1,166 @@
 | 
				
			||||||
 | 
					model:
 | 
				
			||||||
 | 
					  base_learning_rate: 1.0e-04
 | 
				
			||||||
 | 
					  target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
 | 
				
			||||||
 | 
					  params:
 | 
				
			||||||
 | 
					    low_scale_key: "lr"
 | 
				
			||||||
 | 
					    linear_start: 0.001
 | 
				
			||||||
 | 
					    linear_end: 0.015
 | 
				
			||||||
 | 
					    num_timesteps_cond: 1
 | 
				
			||||||
 | 
					    log_every_t: 200
 | 
				
			||||||
 | 
					    timesteps: 1000
 | 
				
			||||||
 | 
					    first_stage_key: "jpg"
 | 
				
			||||||
 | 
					    cond_stage_key: "txt"
 | 
				
			||||||
 | 
					    image_size: 64
 | 
				
			||||||
 | 
					    channels: 16
 | 
				
			||||||
 | 
					    cond_stage_trainable: false
 | 
				
			||||||
 | 
					    conditioning_key: "hybrid-adm"
 | 
				
			||||||
 | 
					    monitor: val/loss_simple_ema
 | 
				
			||||||
 | 
					    scale_factor: 0.22765929   # magic number
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    low_scale_config:
 | 
				
			||||||
 | 
					      target: ldm.modules.encoders.modules.LowScaleEncoder
 | 
				
			||||||
 | 
					      params:
 | 
				
			||||||
 | 
					        linear_start: 0.00085
 | 
				
			||||||
 | 
					        linear_end: 0.0120
 | 
				
			||||||
 | 
					        timesteps: 1000
 | 
				
			||||||
 | 
					        max_noise_level: 250
 | 
				
			||||||
 | 
					        output_size: 64
 | 
				
			||||||
 | 
					        model_config:
 | 
				
			||||||
 | 
					          target: ldm.models.autoencoder.AutoencoderKL
 | 
				
			||||||
 | 
					          params:
 | 
				
			||||||
 | 
					            embed_dim: 4
 | 
				
			||||||
 | 
					            monitor: val/rec_loss
 | 
				
			||||||
 | 
					            ckpt_path: "models/first_stage_models/kl-f8/model.ckpt"
 | 
				
			||||||
 | 
					            ddconfig:
 | 
				
			||||||
 | 
					              double_z: true
 | 
				
			||||||
 | 
					              z_channels: 4
 | 
				
			||||||
 | 
					              resolution: 256
 | 
				
			||||||
 | 
					              in_channels: 3
 | 
				
			||||||
 | 
					              out_ch: 3
 | 
				
			||||||
 | 
					              ch: 128
 | 
				
			||||||
 | 
					              ch_mult:
 | 
				
			||||||
 | 
					                - 1
 | 
				
			||||||
 | 
					                - 2
 | 
				
			||||||
 | 
					                - 4
 | 
				
			||||||
 | 
					                - 4
 | 
				
			||||||
 | 
					              num_res_blocks: 2
 | 
				
			||||||
 | 
					              attn_resolutions: [ ]
 | 
				
			||||||
 | 
					              dropout: 0.0
 | 
				
			||||||
 | 
					            lossconfig:
 | 
				
			||||||
 | 
					              target: torch.nn.Identity
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    scheduler_config: # 10000 warmup steps
 | 
				
			||||||
 | 
					      target: ldm.lr_scheduler.LambdaLinearScheduler
 | 
				
			||||||
 | 
					      params:
 | 
				
			||||||
 | 
					        warm_up_steps: [ 10000 ]
 | 
				
			||||||
 | 
					        cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
 | 
				
			||||||
 | 
					        f_start: [ 1.e-6 ]
 | 
				
			||||||
 | 
					        f_max: [ 1. ]
 | 
				
			||||||
 | 
					        f_min: [ 1. ]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    unet_config:
 | 
				
			||||||
 | 
					      target: ldm.modules.diffusionmodules.openaimodel.UNetModel
 | 
				
			||||||
 | 
					      params:
 | 
				
			||||||
 | 
					        num_classes: 1000  #  timesteps for noise conditoining
 | 
				
			||||||
 | 
					        image_size: 64    # not really needed
 | 
				
			||||||
 | 
					        in_channels: 20
 | 
				
			||||||
 | 
					        out_channels: 16
 | 
				
			||||||
 | 
					        model_channels: 32 # TODO: more
 | 
				
			||||||
 | 
					        attention_resolutions: [ 4, 2, 1 ]
 | 
				
			||||||
 | 
					        num_res_blocks: 2
 | 
				
			||||||
 | 
					        channel_mult: [ 1, 2, 4, 4 ]
 | 
				
			||||||
 | 
					        num_heads: 8
 | 
				
			||||||
 | 
					        use_spatial_transformer: True
 | 
				
			||||||
 | 
					        transformer_depth: 1
 | 
				
			||||||
 | 
					        context_dim: 768
 | 
				
			||||||
 | 
					        use_checkpoint: True
 | 
				
			||||||
 | 
					        legacy: False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    first_stage_config:
 | 
				
			||||||
 | 
					      target: ldm.models.autoencoder.AutoencoderKL
 | 
				
			||||||
 | 
					      params:
 | 
				
			||||||
 | 
					        embed_dim: 16
 | 
				
			||||||
 | 
					        monitor: val/rec_loss
 | 
				
			||||||
 | 
					        ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
 | 
				
			||||||
 | 
					        ddconfig:
 | 
				
			||||||
 | 
					          double_z: True
 | 
				
			||||||
 | 
					          z_channels: 16
 | 
				
			||||||
 | 
					          resolution: 256
 | 
				
			||||||
 | 
					          in_channels: 3
 | 
				
			||||||
 | 
					          out_ch: 3
 | 
				
			||||||
 | 
					          ch: 128
 | 
				
			||||||
 | 
					          ch_mult: [ 1,1,2,2,4 ]  # num_down = len(ch_mult)-1
 | 
				
			||||||
 | 
					          num_res_blocks: 2
 | 
				
			||||||
 | 
					          attn_resolutions: [ 16 ]
 | 
				
			||||||
 | 
					          dropout: 0.0
 | 
				
			||||||
 | 
					        lossconfig:
 | 
				
			||||||
 | 
					          target: torch.nn.Identity
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    cond_stage_config:
 | 
				
			||||||
 | 
					      target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					data:
 | 
				
			||||||
 | 
					  target: ldm.data.laion.WebDataModuleFromConfig
 | 
				
			||||||
 | 
					  params:
 | 
				
			||||||
 | 
					    tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
 | 
				
			||||||
 | 
					    batch_size: 4
 | 
				
			||||||
 | 
					    num_workers: 1
 | 
				
			||||||
 | 
					    train:
 | 
				
			||||||
 | 
					      shards: '{00000..17279}.tar -'
 | 
				
			||||||
 | 
					      shuffle: 10000
 | 
				
			||||||
 | 
					      image_key: jpg
 | 
				
			||||||
 | 
					      image_transforms:
 | 
				
			||||||
 | 
					      - target: torchvision.transforms.Resize
 | 
				
			||||||
 | 
					        params:
 | 
				
			||||||
 | 
					          size: 1024
 | 
				
			||||||
 | 
					          interpolation: 3
 | 
				
			||||||
 | 
					      - target: torchvision.transforms.RandomCrop
 | 
				
			||||||
 | 
					        params:
 | 
				
			||||||
 | 
					          size: 1024
 | 
				
			||||||
 | 
					      postprocess:
 | 
				
			||||||
 | 
					              target: ldm.data.laion.AddLR
 | 
				
			||||||
 | 
					              params:
 | 
				
			||||||
 | 
					                      factor: 4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    # NOTE use enough shards to avoid empty validation loops in workers
 | 
				
			||||||
 | 
					    validation:
 | 
				
			||||||
 | 
					      shards: '{17280..17535}.tar -'
 | 
				
			||||||
 | 
					      shuffle: 0
 | 
				
			||||||
 | 
					      image_key: jpg
 | 
				
			||||||
 | 
					      image_transforms:
 | 
				
			||||||
 | 
					      - target: torchvision.transforms.Resize
 | 
				
			||||||
 | 
					        params:
 | 
				
			||||||
 | 
					          size: 1024
 | 
				
			||||||
 | 
					          interpolation: 3
 | 
				
			||||||
 | 
					      - target: torchvision.transforms.CenterCrop
 | 
				
			||||||
 | 
					        params:
 | 
				
			||||||
 | 
					          size: 1024
 | 
				
			||||||
 | 
					      postprocess:
 | 
				
			||||||
 | 
					              target: ldm.data.laion.AddLR
 | 
				
			||||||
 | 
					              params:
 | 
				
			||||||
 | 
					                      factor: 4
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					lightning:
 | 
				
			||||||
 | 
					  callbacks:
 | 
				
			||||||
 | 
					    image_logger:
 | 
				
			||||||
 | 
					      target: main.ImageLogger
 | 
				
			||||||
 | 
					      params:
 | 
				
			||||||
 | 
					        batch_frequency: 10
 | 
				
			||||||
 | 
					        max_images: 4
 | 
				
			||||||
 | 
					        increase_log_steps: False
 | 
				
			||||||
 | 
					        log_first_step: False
 | 
				
			||||||
 | 
					        log_images_kwargs:
 | 
				
			||||||
 | 
					          use_ema_scope: False
 | 
				
			||||||
 | 
					          inpaint: False
 | 
				
			||||||
 | 
					          plot_progressive_rows: False
 | 
				
			||||||
 | 
					          plot_diffusion_rows: False
 | 
				
			||||||
 | 
					          N: 4
 | 
				
			||||||
 | 
					          unconditional_guidance_scale: 3.0
 | 
				
			||||||
 | 
					          unconditional_guidance_label: [""]
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					  trainer:
 | 
				
			||||||
 | 
					    benchmark: True
 | 
				
			||||||
 | 
					    val_check_interval: 5000000  # really sorry
 | 
				
			||||||
 | 
					    num_sanity_val_steps: 0
 | 
				
			||||||
 | 
					    accumulate_grad_batches: 1
 | 
				
			||||||
| 
						 | 
					@ -138,6 +138,11 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
 | 
				
			||||||
        img_key = dataset_config.get('image_key', 'jpeg')
 | 
					        img_key = dataset_config.get('image_key', 'jpeg')
 | 
				
			||||||
        transform_dict.update({img_key: image_transforms})
 | 
					        transform_dict.update({img_key: image_transforms})
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if 'postprocess' in dataset_config:
 | 
				
			||||||
 | 
					            postprocess = instantiate_from_config(dataset_config['postprocess'])
 | 
				
			||||||
 | 
					        else:
 | 
				
			||||||
 | 
					            postprocess = None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        shuffle = dataset_config.get('shuffle', 0)
 | 
					        shuffle = dataset_config.get('shuffle', 0)
 | 
				
			||||||
        shardshuffle = shuffle > 0
 | 
					        shardshuffle = shuffle > 0
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					@ -156,8 +161,12 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
 | 
				
			||||||
                .decode('pil', handler=wds.warn_and_continue)
 | 
					                .decode('pil', handler=wds.warn_and_continue)
 | 
				
			||||||
                .select(self.filter_size)
 | 
					                .select(self.filter_size)
 | 
				
			||||||
                .map_dict(**transform_dict, handler=wds.warn_and_continue)
 | 
					                .map_dict(**transform_dict, handler=wds.warn_and_continue)
 | 
				
			||||||
 | 
					                )
 | 
				
			||||||
 | 
					        if postprocess is not None:
 | 
				
			||||||
 | 
					            dset = dset.map(postprocess)
 | 
				
			||||||
 | 
					        dset = (dset
 | 
				
			||||||
                .batched(self.batch_size, partial=False,
 | 
					                .batched(self.batch_size, partial=False,
 | 
				
			||||||
                         collation_fn=dict_collation_fn)
 | 
					                    collation_fn=dict_collation_fn)
 | 
				
			||||||
                )
 | 
					                )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
 | 
					        loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
 | 
				
			||||||
| 
						 | 
					@ -189,6 +198,29 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
 | 
				
			||||||
        return self.make_loader(self.test, train=False)
 | 
					        return self.make_loader(self.test, train=False)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					from ldm.modules.image_degradation import degradation_fn_bsr_light
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					class AddLR(object):
 | 
				
			||||||
 | 
					    def __init__(self, factor):
 | 
				
			||||||
 | 
					        self.factor = factor
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def pt2np(self, x):
 | 
				
			||||||
 | 
					        x = ((x+1.0)*127.5).clamp(0, 255).to(dtype=torch.uint8).detach().cpu().numpy()
 | 
				
			||||||
 | 
					        return x
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def np2pt(self, x):
 | 
				
			||||||
 | 
					        x = torch.from_numpy(x)/127.5-1.0
 | 
				
			||||||
 | 
					        return x
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    def __call__(self, sample):
 | 
				
			||||||
 | 
					        # sample['jpg'] is tensor hwc in [-1, 1] at this point
 | 
				
			||||||
 | 
					        x = self.pt2np(sample['jpg'])
 | 
				
			||||||
 | 
					        x = degradation_fn_bsr_light(x, sf=self.factor)['image']
 | 
				
			||||||
 | 
					        x = self.np2pt(x)
 | 
				
			||||||
 | 
					        sample['lr'] = x
 | 
				
			||||||
 | 
					        return sample
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def example00():
 | 
					def example00():
 | 
				
			||||||
    url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
 | 
					    url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
 | 
				
			||||||
    dataset = wds.WebDataset(url)
 | 
					    dataset = wds.WebDataset(url)
 | 
				
			||||||
| 
						 | 
					@ -270,7 +302,8 @@ if __name__ == "__main__":
 | 
				
			||||||
    from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
 | 
					    from torch.utils.data import DataLoader, RandomSampler, Sampler, SequentialSampler
 | 
				
			||||||
    from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
 | 
					    from pytorch_lightning.trainer.supporters import CombinedLoader, CycleIterator
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
 | 
					    #config = OmegaConf.load("configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml")
 | 
				
			||||||
 | 
					    config = OmegaConf.load("configs/stable-diffusion/txt2img-upscale-clip-encoder-f16-1024.yaml")
 | 
				
			||||||
    datamod = WebDataModuleFromConfig(**config["data"]["params"])
 | 
					    datamod = WebDataModuleFromConfig(**config["data"]["params"])
 | 
				
			||||||
    dataloader = datamod.train_dataloader()
 | 
					    dataloader = datamod.train_dataloader()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
		Reference in a new issue