Merge branch 'main' of github.com:pesser/stable-diffusion into main

This commit is contained in:
rromb 2022-06-16 10:46:24 +02:00
commit bbbeebf9a8
5 changed files with 84 additions and 9 deletions

View file

@ -0,0 +1,69 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder

View file

@ -1,5 +1,5 @@
model:
base_learning_rate: 1.0e-04
base_learning_rate: 5.0e-05
target: ldm.models.diffusion.ddpm.LatentUpscaleDiffusion
params:
low_scale_key: "lr"
@ -66,10 +66,11 @@ model:
image_size: 64 # not really needed
in_channels: 20
out_channels: 16
model_channels: 192
attention_resolutions: [ 4, 2, 1 ]
model_channels: 96
attention_resolutions: [ 8, 4, 2 ] # -> at 32, 16, 8
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
channel_mult: [ 1, 2, 4, 8, 8 ]
# -> res, ds: (64, 1), (32, 2), (16, 4), (8, 8), (4, 16)
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
@ -105,7 +106,7 @@ data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
batch_size: 8
batch_size: 10
num_workers: 4
train:
shards: '{00000..17279}.tar -'
@ -143,6 +144,8 @@ data:
factor: 4
lightning:
find_unused_parameters: False
callbacks:
image_logger:
target: main.ImageLogger

View file

@ -1556,7 +1556,7 @@ class LatentUpscaleDiffusion(LatentDiffusion):
uc[k] = [uc_tmp]
elif k == "c_adm":
assert isinstance(c[k], torch.Tensor)
uc[k] = torch.ones_like(c[k]) * (self.low_scale_model.max_max_noise_level-1)
uc[k] = torch.ones_like(c[k]) * (self.low_scale_model.max_noise_level-1)
elif isinstance(c[k], list):
uc[k] = [torch.zeros_like(c[k][i]) for i in range(len(c[k]))]
else:

View file

@ -253,9 +253,9 @@ class SpatialTransformer(nn.Module):
x_in = x
x = self.norm(x)
x = self.proj_in(x)
x = rearrange(x, 'b c h w -> b (h w) c')
x = rearrange(x, 'b c h w -> b (h w) c').contiguous()
for block in self.transformer_blocks:
x = block(x, context=context)
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w)
x = rearrange(x, 'b (h w) c -> b c h w', h=h, w=w).contiguous()
x = self.proj_out(x)
return x + x_in

View file

@ -759,6 +759,9 @@ if __name__ == "__main__":
del callbacks_cfg['ignore_keys_callback']
trainer_kwargs["callbacks"] = [instantiate_from_config(callbacks_cfg[k]) for k in callbacks_cfg]
if not lightning_config.get("find_unused_parameters", True):
from pytorch_lightning.plugins import DDPPlugin
trainer_kwargs["plugins"] = DDPPlugin(find_unused_parameters=False)
trainer = Trainer.from_argparse_args(trainer_opt, **trainer_kwargs)
trainer.logdir = logdir ###