simplify data loader
This commit is contained in:
parent
74797d4099
commit
ac1ca73d69
2 changed files with 67 additions and 86 deletions
|
@ -81,7 +81,8 @@ data:
|
||||||
num_workers: 4
|
num_workers: 4
|
||||||
n_nodes: 4
|
n_nodes: 4
|
||||||
train:
|
train:
|
||||||
shards: '{000000..231349}.tar -'
|
shards: '{000000..231339}.tar -'
|
||||||
|
shuffle: 10000
|
||||||
image_key: jpg
|
image_key: jpg
|
||||||
image_transforms:
|
image_transforms:
|
||||||
- target: torchvision.transforms.Resize
|
- target: torchvision.transforms.Resize
|
||||||
|
@ -92,10 +93,9 @@ data:
|
||||||
params:
|
params:
|
||||||
size: 256
|
size: 256
|
||||||
|
|
||||||
shuffle: 0
|
|
||||||
n_examples: 100000
|
|
||||||
validation:
|
validation:
|
||||||
shards: '{000011..000012}.tar -' # TODO: wild guess, change
|
shards: '{231340..231349}.tar -'
|
||||||
|
shuffle: 0
|
||||||
image_key: jpg
|
image_key: jpg
|
||||||
image_transforms:
|
image_transforms:
|
||||||
- target: torchvision.transforms.Resize
|
- target: torchvision.transforms.Resize
|
||||||
|
@ -106,10 +106,6 @@ data:
|
||||||
params:
|
params:
|
||||||
size: 256
|
size: 256
|
||||||
|
|
||||||
shuffle: 0
|
|
||||||
n_examples: 60000 # TODO: find out
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
lightning:
|
lightning:
|
||||||
callbacks:
|
callbacks:
|
||||||
|
|
|
@ -12,6 +12,7 @@ from tqdm import tqdm
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
from einops import rearrange
|
from einops import rearrange
|
||||||
import torch
|
import torch
|
||||||
|
from webdataset.handlers import warn_and_continue
|
||||||
|
|
||||||
|
|
||||||
from ldm.util import instantiate_from_config
|
from ldm.util import instantiate_from_config
|
||||||
|
@ -27,12 +28,10 @@ def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
||||||
:rtype: dict
|
:rtype: dict
|
||||||
"""
|
"""
|
||||||
batched = {key: [] for key in samples[0]}
|
batched = {key: [] for key in samples[0]}
|
||||||
# assert isinstance(samples[0][first_key], (list, tuple)), type(samples[first_key])
|
|
||||||
|
|
||||||
for s in samples:
|
for s in samples:
|
||||||
[batched[key].append(s[key]) for key in batched]
|
[batched[key].append(s[key]) for key in batched]
|
||||||
|
|
||||||
|
|
||||||
result = {}
|
result = {}
|
||||||
for key in batched:
|
for key in batched:
|
||||||
if isinstance(batched[key][0], (int, float)):
|
if isinstance(batched[key][0], (int, float)):
|
||||||
|
@ -40,21 +39,18 @@ def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
|
||||||
result[key] = np.array(list(batched[key]))
|
result[key] = np.array(list(batched[key]))
|
||||||
elif isinstance(batched[key][0], torch.Tensor):
|
elif isinstance(batched[key][0], torch.Tensor):
|
||||||
if combine_tensors:
|
if combine_tensors:
|
||||||
# import torch
|
|
||||||
|
|
||||||
result[key] = torch.stack(list(batched[key]))
|
result[key] = torch.stack(list(batched[key]))
|
||||||
elif isinstance(batched[key][0], np.ndarray):
|
elif isinstance(batched[key][0], np.ndarray):
|
||||||
if combine_tensors:
|
if combine_tensors:
|
||||||
result[key] = np.array(list(batched[key]))
|
result[key] = np.array(list(batched[key]))
|
||||||
else:
|
else:
|
||||||
result[key] = list(batched[key])
|
result[key] = list(batched[key])
|
||||||
# result.append(b)
|
|
||||||
return result
|
return result
|
||||||
|
|
||||||
|
|
||||||
class WebDataModuleFromConfig(pl.LightningDataModule):
|
class WebDataModuleFromConfig(pl.LightningDataModule):
|
||||||
def __init__(self, tar_base, batch_size, train=None, validation=None,
|
def __init__(self, tar_base, batch_size, train=None, validation=None,
|
||||||
test=None, num_workers=4, load_ddp=True, n_nodes=1,
|
test=None, num_workers=4, multinode=True,
|
||||||
**kwargs):
|
**kwargs):
|
||||||
super().__init__(self)
|
super().__init__(self)
|
||||||
print(f'Setting tar base to {tar_base}')
|
print(f'Setting tar base to {tar_base}')
|
||||||
|
@ -64,9 +60,7 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
|
||||||
self.train = train
|
self.train = train
|
||||||
self.validation = validation
|
self.validation = validation
|
||||||
self.test = test
|
self.test = test
|
||||||
self.load_ddp = load_ddp
|
self.multinode = multinode
|
||||||
self.multinode = n_nodes > 1
|
|
||||||
self.n_nodes = n_nodes # n gpu ??
|
|
||||||
|
|
||||||
def make_loader(self, dataset_config, train=True):
|
def make_loader(self, dataset_config, train=True):
|
||||||
if 'image_transforms' in dataset_config:
|
if 'image_transforms' in dataset_config:
|
||||||
|
@ -83,101 +77,47 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
|
||||||
else:
|
else:
|
||||||
transforms_config = dict()
|
transforms_config = dict()
|
||||||
|
|
||||||
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey]) if transforms_config[
|
transform_dict = {dkey: load_partial_from_config(transforms_config[dkey])
|
||||||
dkey] != 'identity' else identity
|
if transforms_config[dkey] != 'identity' else identity
|
||||||
for dkey in transforms_config}
|
for dkey in transforms_config}
|
||||||
img_key = dataset_config.get('image_key', 'jpeg')
|
img_key = dataset_config.get('image_key', 'jpeg')
|
||||||
transform_dict.update({img_key: image_transforms})
|
transform_dict.update({img_key: image_transforms})
|
||||||
|
|
||||||
shuffle = dataset_config.get('shuffle', 0)
|
shuffle = dataset_config.get('shuffle', 0)
|
||||||
|
shardshuffle = shuffle > 0
|
||||||
|
|
||||||
# TODO fid strategy when n exmples not known beforehand
|
|
||||||
n_examples = dataset_config.get('n_examples', 1e6) // self.n_nodes
|
|
||||||
|
|
||||||
shards_to_load = dataset_config.shards
|
|
||||||
dset_name = 'unknown'
|
|
||||||
if isinstance(shards_to_load, str):
|
|
||||||
print(f'Loading tars based on the string {shards_to_load}')
|
|
||||||
tars = os.path.join(self.tar_base, shards_to_load)
|
|
||||||
start_shard_id, end_shard_id = dataset_config.shards.split('{')[-1].split('}')[0].split('..')
|
|
||||||
n_shards = int(end_shard_id) - int(start_shard_id) + 1
|
|
||||||
dset_name = dataset_config.shards.split('-')[0]
|
|
||||||
elif isinstance(shards_to_load, int):
|
|
||||||
print(f'Creating tar list, max shard is {shards_to_load}')
|
|
||||||
try:
|
|
||||||
tars = [tf for tf in natsorted(glob(os.path.join(self.tar_base, '*.tar'))) if
|
|
||||||
int(tf.split('/')[-1].split('.')[0]) < shards_to_load]
|
|
||||||
n_shards = len(tars)
|
|
||||||
random.shuffle(tars)
|
|
||||||
|
|
||||||
except ValueError as e:
|
|
||||||
print('tarfile names should follow the pattern <zero_padded_number>.tar . Check names of the files')
|
|
||||||
raise e
|
|
||||||
else:
|
|
||||||
raise ValueError(
|
|
||||||
'shards should be either a string containing consecutive shards or an int defining the max shard number')
|
|
||||||
|
|
||||||
print(f'Got {n_shards} shard files in datafolder for {"training" if train else "validation"}')
|
|
||||||
|
|
||||||
# if self.num_workers > 0:
|
|
||||||
# assert n_shards % self.num_workers == 0 , f'Number of workers which is {self.num_workers} does not evenly divide number of shards which is {n_shards}'
|
|
||||||
print(f'Loading webdataset based dataloader based on {n_shards} of {dset_name} dataset.')
|
|
||||||
|
|
||||||
# start creating the dataset
|
|
||||||
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
|
nodesplitter = wds.shardlists.split_by_node if self.multinode else wds.shardlists.single_node_only
|
||||||
epoch_length = n_examples // (self.batch_size)
|
|
||||||
|
|
||||||
dset = wds.WebDataset(tars, nodesplitter=nodesplitter).shuffle(shuffle)
|
tars = os.path.join(self.tar_base, dataset_config.shards)
|
||||||
|
dset = wds.WebDataset(
|
||||||
with_epoch_args = {'nsamples': n_examples, 'nbatches': epoch_length}
|
tars,
|
||||||
|
nodesplitter=nodesplitter,
|
||||||
if 'filters' in dataset_config:
|
shardshuffle=shardshuffle).shuffle(shuffle)
|
||||||
for stage in tqdm(dataset_config.filters,
|
print(f'Loading webdataset with {len(dset.pipeline[0].urls)} shards.')
|
||||||
desc=f'Applying the following filters: {[f for f in dataset_config.filters]}'):
|
|
||||||
f = getattr(dset, stage)
|
|
||||||
dset = f(dset, *dataset_config.filters[stage].args,
|
|
||||||
**dataset_config.filters[stage].get('kwargs', dict()))
|
|
||||||
|
|
||||||
print(f'Dataset holding {len(dset.pipeline[0].urls)} shards')
|
|
||||||
|
|
||||||
from webdataset.handlers import warn_and_continue
|
|
||||||
|
|
||||||
dset = (dset
|
dset = (dset
|
||||||
.decode('pil', handler=warn_and_continue)
|
.decode('pil', handler=warn_and_continue)
|
||||||
# .to_tuple("jpg;png;jpeg pickle cls hls")
|
|
||||||
# .map_tuple(image_transforms,load_partial_from_config(nns_transform) if 'target' in nns_transform else identity,identity,identity)
|
|
||||||
.map_dict(**transform_dict)
|
.map_dict(**transform_dict)
|
||||||
.repeat()
|
|
||||||
.batched(self.batch_size, partial=False,
|
.batched(self.batch_size, partial=False,
|
||||||
collation_fn=dict_collation_fn)
|
collation_fn=dict_collation_fn)
|
||||||
.with_length(n_examples)
|
|
||||||
.with_epoch(**with_epoch_args)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
|
loader = wds.WebLoader(dset, batch_size=None, shuffle=False,
|
||||||
num_workers=self.num_workers)
|
num_workers=self.num_workers)
|
||||||
|
|
||||||
return loader, n_examples
|
return loader
|
||||||
|
|
||||||
def train_dataloader(self):
|
def train_dataloader(self):
|
||||||
assert self.train is not None
|
return self.make_loader(self.train)
|
||||||
loader, dset_size = self.make_loader(self.train)
|
|
||||||
# if self.load_ddp:
|
|
||||||
# loader = loader.ddp_equalize(dset_size // self.batch_size)
|
|
||||||
return loader
|
|
||||||
|
|
||||||
def val_dataloader(self):
|
def val_dataloader(self):
|
||||||
assert self.train is not None
|
return self.make_loader(self.validation, train=False)
|
||||||
loader, _ = self.make_loader(self.validation, train=False)
|
|
||||||
return loader
|
|
||||||
|
|
||||||
def test_dataloader(self):
|
def test_dataloader(self):
|
||||||
assert self.train is not None
|
return self.make_loader(self.test, train=False)
|
||||||
loader, _ = self.make_loader(self.test, train=False)
|
|
||||||
return loader
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
def example00():
|
||||||
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
||||||
dataset = wds.WebDataset(url)
|
dataset = wds.WebDataset(url)
|
||||||
example = next(iter(dataset))
|
example = next(iter(dataset))
|
||||||
|
@ -207,3 +147,48 @@ if __name__ == "__main__":
|
||||||
print(ex["image"].size, ex["text"])
|
print(ex["image"].size, ex["text"])
|
||||||
if i >= 100:
|
if i >= 100:
|
||||||
break
|
break
|
||||||
|
|
||||||
|
|
||||||
|
def example01():
|
||||||
|
# the first laion shards contain ~10k examples each
|
||||||
|
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/{000000..000002}.tar -"
|
||||||
|
|
||||||
|
batch_size = 3
|
||||||
|
shuffle_buffer = 10000
|
||||||
|
dset = wds.WebDataset(
|
||||||
|
url,
|
||||||
|
nodesplitter=wds.shardlists.split_by_node,
|
||||||
|
shardshuffle=True,
|
||||||
|
)
|
||||||
|
dset = (dset
|
||||||
|
.shuffle(shuffle_buffer, initial=shuffle_buffer)
|
||||||
|
.decode('pil', handler=warn_and_continue)
|
||||||
|
.batched(batch_size, partial=False,
|
||||||
|
collation_fn=dict_collation_fn)
|
||||||
|
)
|
||||||
|
|
||||||
|
num_workers = 2
|
||||||
|
loader = wds.WebLoader(dset, batch_size=None, shuffle=False, num_workers=num_workers)
|
||||||
|
|
||||||
|
batch_sizes = list()
|
||||||
|
keys_per_epoch = list()
|
||||||
|
for epoch in range(5):
|
||||||
|
keys = list()
|
||||||
|
for batch in tqdm(loader):
|
||||||
|
batch_sizes.append(len(batch["__key__"]))
|
||||||
|
keys.append(batch["__key__"])
|
||||||
|
|
||||||
|
for bs in batch_sizes:
|
||||||
|
assert bs==batch_size
|
||||||
|
print(f"{len(batch_sizes)} batches of size {batch_size}.")
|
||||||
|
batch_sizes = list()
|
||||||
|
|
||||||
|
keys_per_epoch.append(keys)
|
||||||
|
for i_batch in [0, 1, -1]:
|
||||||
|
print(f"Batch {i_batch} of epoch {epoch}:")
|
||||||
|
print(keys[i_batch])
|
||||||
|
print("next epoch.")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
example01()
|
||||||
|
|
Loading…
Reference in a new issue