Merge branch 'main' of github.com:pesser/stable-diffusion into main
This commit is contained in:
commit
a8dcade961
6 changed files with 130 additions and 3 deletions
|
@ -14,7 +14,16 @@ conda activate stable
|
||||||
cd /fsx/stable-diffusion/stable-diffusion
|
cd /fsx/stable-diffusion/stable-diffusion
|
||||||
|
|
||||||
CONFIG=configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml
|
CONFIG=configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512.yaml
|
||||||
EXTRA="model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints/256f8ft512-2022-06-15-pruned.ckpt"
|
|
||||||
|
# initial parameters
|
||||||
|
#EXTRA="model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints/256f8ft512-2022-06-15-pruned.ckpt"
|
||||||
|
|
||||||
|
# resumed after crash
|
||||||
|
#EXTRA="model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/logs/2022-07-06T23-43-51_txt2img-1p4B-multinode-clip-encoder-high-res-512/checkpoints/last.ckpt"
|
||||||
|
|
||||||
|
# continue on improved aesthetics
|
||||||
|
EXTRA="model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/logs/2022-07-07T16-15-18_txt2img-1p4B-multinode-clip-encoder-high-res-512/checkpoints/last.ckpt data.params.tar_base=__improvedaesthetic__ -f _improvedaesthetic"
|
||||||
|
|
||||||
DEBUG="-d True lightning.callbacks.image_logger.params.batch_frequency=5"
|
DEBUG="-d True lightning.callbacks.image_logger.params.batch_frequency=5"
|
||||||
|
|
||||||
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA #$DEBUG
|
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA #$DEBUG
|
||||||
|
|
|
@ -1,7 +1,7 @@
|
||||||
#!/bin/bash
|
#!/bin/bash
|
||||||
#SBATCH --partition=compute-od-gpu
|
#SBATCH --partition=compute-od-gpu
|
||||||
#SBATCH --job-name=stable-diffusion-512cont
|
#SBATCH --job-name=stable-diffusion-512cont-improvedaesthetics
|
||||||
#SBATCH --nodes=24
|
#SBATCH --nodes=20
|
||||||
#SBATCH --gpus-per-node=8
|
#SBATCH --gpus-per-node=8
|
||||||
#SBATCH --cpus-per-gpu=4
|
#SBATCH --cpus-per-gpu=4
|
||||||
#SBATCH --ntasks-per-node=1
|
#SBATCH --ntasks-per-node=1
|
||||||
|
|
20
scripts/slurm/resume_512_improvedaesthetic/launcher.sh
Normal file
20
scripts/slurm/resume_512_improvedaesthetic/launcher.sh
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
#!/bin/bash
|
||||||
|
export NODE_RANK=${SLURM_NODEID}
|
||||||
|
echo "##########################################"
|
||||||
|
echo MASTER_ADDR=${MASTER_ADDR}
|
||||||
|
echo MASTER_PORT=${MASTER_PORT}
|
||||||
|
echo NODE_RANK=${NODE_RANK}
|
||||||
|
echo WORLD_SIZE=${WORLD_SIZE}
|
||||||
|
echo "##########################################"
|
||||||
|
# debug environment worked great so we stick with it
|
||||||
|
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
|
||||||
|
# env with pip dependencies from stable diffusion's requirements.txt
|
||||||
|
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
|
||||||
|
conda activate stable
|
||||||
|
cd /fsx/stable-diffusion/stable-diffusion
|
||||||
|
|
||||||
|
CONFIG=configs/stable-diffusion/txt2img-1p4B-multinode-clip-encoder-high-res-512-improvedaesthetic.yaml
|
||||||
|
EXTRA="model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/logs/2022-07-07T16-15-18_txt2img-1p4B-multinode-clip-encoder-high-res-512/checkpoints/last.ckpt"
|
||||||
|
DEBUG="-d True lightning.callbacks.image_logger.params.batch_frequency=5"
|
||||||
|
|
||||||
|
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA #$DEBUG
|
39
scripts/slurm/resume_512_improvedaesthetic/sbatch.sh
Normal file
39
scripts/slurm/resume_512_improvedaesthetic/sbatch.sh
Normal file
|
@ -0,0 +1,39 @@
|
||||||
|
#!/bin/bash
|
||||||
|
#SBATCH --partition=compute-od-gpu
|
||||||
|
#SBATCH --job-name=stable-diffusion-512cont-improvedaesthetic
|
||||||
|
#SBATCH --nodes=20
|
||||||
|
#SBATCH --gpus-per-node=8
|
||||||
|
#SBATCH --cpus-per-gpu=4
|
||||||
|
#SBATCH --ntasks-per-node=1
|
||||||
|
#SBATCH --output=%x_%j.%n.out
|
||||||
|
|
||||||
|
# nccl / efa stuff
|
||||||
|
module load intelmpi
|
||||||
|
source /opt/intel/mpi/latest/env/vars.sh
|
||||||
|
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
|
||||||
|
export NCCL_PROTO=simple
|
||||||
|
export PATH=/opt/amazon/efa/bin:$PATH
|
||||||
|
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
|
||||||
|
export FI_EFA_FORK_SAFE=1
|
||||||
|
export FI_LOG_LEVEL=1
|
||||||
|
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
|
||||||
|
export NCCL_DEBUG=info
|
||||||
|
export PYTHONFAULTHANDLER=1
|
||||||
|
export CUDA_LAUNCH_BLOCKING=0
|
||||||
|
export OMPI_MCA_mtl_base_verbose=1
|
||||||
|
export FI_EFA_ENABLE_SHM_TRANSFER=0
|
||||||
|
export FI_PROVIDER=efa
|
||||||
|
export FI_EFA_TX_MIN_CREDITS=64
|
||||||
|
export NCCL_TREE_THRESHOLD=0
|
||||||
|
|
||||||
|
# pytorch multinode vars
|
||||||
|
# node rank should be set in launcher script
|
||||||
|
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||||
|
export MASTER_PORT=11338
|
||||||
|
export WORLD_SIZE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
||||||
|
|
||||||
|
echo MASTER_ADDR=${MASTER_ADDR}
|
||||||
|
echo MASTER_PORT=${MASTER_PORT}
|
||||||
|
echo WORLD_SIZE=${WORLD_SIZE}
|
||||||
|
|
||||||
|
srun --output=%x_%j.%n.out bash /fsx/stable-diffusion/stable-diffusion/scripts/slurm/resume_512_improvedaesthetic/launcher.sh
|
20
scripts/slurm/resume_768_hr/launcher.sh
Normal file
20
scripts/slurm/resume_768_hr/launcher.sh
Normal file
|
@ -0,0 +1,20 @@
|
||||||
|
#!/bin/bash
|
||||||
|
export NODE_RANK=${SLURM_NODEID}
|
||||||
|
echo "##########################################"
|
||||||
|
echo MASTER_ADDR=${MASTER_ADDR}
|
||||||
|
echo MASTER_PORT=${MASTER_PORT}
|
||||||
|
echo NODE_RANK=${NODE_RANK}
|
||||||
|
echo WORLD_SIZE=${WORLD_SIZE}
|
||||||
|
echo "##########################################"
|
||||||
|
# debug environment worked great so we stick with it
|
||||||
|
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
|
||||||
|
# env with pip dependencies from stable diffusion's requirements.txt
|
||||||
|
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
|
||||||
|
conda activate stable
|
||||||
|
cd /fsx/stable-diffusion/stable-diffusion
|
||||||
|
|
||||||
|
CONFIG=configs/stable-diffusion/txt2img-multinode-clip-encoder-f16-768-laion-hr.yaml
|
||||||
|
EXTRA="model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints/f16-33k+12k-hr_pruned.ckpt"
|
||||||
|
DEBUG="-d True lightning.callbacks.image_logger.params.batch_frequency=5"
|
||||||
|
|
||||||
|
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA #$DEBUG
|
39
scripts/slurm/resume_768_hr/sbatch.sh
Normal file
39
scripts/slurm/resume_768_hr/sbatch.sh
Normal file
|
@ -0,0 +1,39 @@
|
||||||
|
#!/bin/bash
|
||||||
|
#SBATCH --partition=compute-od-gpu
|
||||||
|
#SBATCH --job-name=stable-diffusion-768cont-resumehr
|
||||||
|
#SBATCH --nodes=20
|
||||||
|
#SBATCH --gpus-per-node=8
|
||||||
|
#SBATCH --cpus-per-gpu=4
|
||||||
|
#SBATCH --ntasks-per-node=1
|
||||||
|
#SBATCH --output=%x_%j.%n.out
|
||||||
|
|
||||||
|
# nccl / efa stuff
|
||||||
|
module load intelmpi
|
||||||
|
source /opt/intel/mpi/latest/env/vars.sh
|
||||||
|
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
|
||||||
|
export NCCL_PROTO=simple
|
||||||
|
export PATH=/opt/amazon/efa/bin:$PATH
|
||||||
|
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
|
||||||
|
export FI_EFA_FORK_SAFE=1
|
||||||
|
export FI_LOG_LEVEL=1
|
||||||
|
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
|
||||||
|
export NCCL_DEBUG=info
|
||||||
|
export PYTHONFAULTHANDLER=1
|
||||||
|
export CUDA_LAUNCH_BLOCKING=0
|
||||||
|
export OMPI_MCA_mtl_base_verbose=1
|
||||||
|
export FI_EFA_ENABLE_SHM_TRANSFER=0
|
||||||
|
export FI_PROVIDER=efa
|
||||||
|
export FI_EFA_TX_MIN_CREDITS=64
|
||||||
|
export NCCL_TREE_THRESHOLD=0
|
||||||
|
|
||||||
|
# pytorch multinode vars
|
||||||
|
# node rank should be set in launcher script
|
||||||
|
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||||
|
export MASTER_PORT=11338
|
||||||
|
export WORLD_SIZE=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l)
|
||||||
|
|
||||||
|
echo MASTER_ADDR=${MASTER_ADDR}
|
||||||
|
echo MASTER_PORT=${MASTER_PORT}
|
||||||
|
echo WORLD_SIZE=${WORLD_SIZE}
|
||||||
|
|
||||||
|
srun --output=%x_%j.%n.out bash /fsx/stable-diffusion/stable-diffusion/scripts/slurm/resume_768_hr/launcher.sh # srun vs mpirun?
|
Loading…
Reference in a new issue