Merge branch 'main' of github.com:pesser/stable-diffusion into main

This commit is contained in:
Robin Rombach 2022-07-22 14:12:32 +02:00
commit a681f02fdd
16 changed files with 564 additions and 9 deletions

View file

@ -0,0 +1,135 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.18215
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 1 ] # NOTE for resuming. use 10000 if starting from scratch
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 4
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
batch_size: 4
num_workers: 4
multinode: True
train:
shards: '{00000..17279}.tar -'
shuffle: 10000
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 512
# NOTE use enough shards to avoid empty validation loops in workers
validation:
shards: '{17280..17535}.tar -'
shuffle: 0
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 512
lightning:
find_unused_parameters: False
modelcheckpoint:
params:
every_n_train_steps: 5000
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 4
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 4
unconditional_guidance_scale: 3.0
unconditional_guidance_label: [""]
trainer:
benchmark: True
val_check_interval: 5000000 # really sorry
num_sanity_val_steps: 0
accumulate_grad_batches: 2

View file

@ -105,6 +105,7 @@ def dict_collation_fn(samples, combine_tensors=True, combine_scalars=True):
class WebDataModuleFromConfig(pl.LightningDataModule): class WebDataModuleFromConfig(pl.LightningDataModule):
def __init__(self, tar_base, batch_size, train=None, validation=None, def __init__(self, tar_base, batch_size, train=None, validation=None,
test=None, num_workers=4, multinode=True, min_size=None, test=None, num_workers=4, multinode=True, min_size=None,
max_pwatermark=1.0,
**kwargs): **kwargs):
super().__init__(self) super().__init__(self)
print(f'Setting tar base to {tar_base}') print(f'Setting tar base to {tar_base}')
@ -116,6 +117,7 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
self.test = test self.test = test
self.multinode = multinode self.multinode = multinode
self.min_size = min_size # filter out very small images self.min_size = min_size # filter out very small images
self.max_pwatermark = max_pwatermark # filter out watermarked images
def make_loader(self, dataset_config, train=True): def make_loader(self, dataset_config, train=True):
if 'image_transforms' in dataset_config: if 'image_transforms' in dataset_config:
@ -184,7 +186,7 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
if self.min_size is None: if self.min_size is None:
return True return True
try: try:
return x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size return x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size and x['json']['pwatermark'] <= self.max_pwatermark
except Exception: except Exception:
return False return False
@ -300,8 +302,7 @@ def example01():
print("next epoch.") print("next epoch.")
if __name__ == "__main__": def example02():
#example01()
from omegaconf import OmegaConf from omegaconf import OmegaConf
from torch.utils.data.distributed import DistributedSampler from torch.utils.data.distributed import DistributedSampler
from torch.utils.data import IterableDataset from torch.utils.data import IterableDataset
@ -318,3 +319,82 @@ if __name__ == "__main__":
print(batch.keys()) print(batch.keys())
print(batch["jpg"].shape) print(batch["jpg"].shape)
break break
def example03():
# improved aesthetics
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{000000..060207}.tar -"
dataset = wds.WebDataset(tars)
def filter_keys(x):
try:
return ("jpg" in x) and ("txt" in x)
except Exception:
return False
def filter_size(x):
try:
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
except Exception:
return False
def filter_watermark(x):
try:
return x['json']['pwatermark'] < 0.5
except Exception:
return False
dataset = (dataset
.select(filter_keys)
.decode('pil', handler=wds.warn_and_continue))
n_total = 0
n_large = 0
n_large_nowm = 0
for i, example in enumerate(dataset):
n_total += 1
if filter_size(example):
n_large += 1
if filter_watermark(example):
n_large_nowm += 1
if i%500 == 0:
print(i)
print(f"Large: {n_large}/{n_total} | {n_large/n_total*100:.2f}%")
if n_large > 0:
print(f"No Watermark: {n_large_nowm}/{n_large} | {n_large_nowm/n_large*100:.2f}%")
def example04():
# improved aesthetics
for i_shard in range(60208)[::-1]:
print(i_shard)
tars = "pipe:aws s3 cp s3://s-laion/improved-aesthetics-laion-2B-en-subsets/aesthetics_tars/{:06}.tar -".format(i_shard)
dataset = wds.WebDataset(tars)
def filter_keys(x):
try:
return ("jpg" in x) and ("txt" in x)
except Exception:
return False
def filter_size(x):
try:
return x['json']['original_width'] >= 512 and x['json']['original_height'] >= 512
except Exception:
return False
dataset = (dataset
.select(filter_keys)
.decode('pil', handler=wds.warn_and_continue))
try:
example = next(iter(dataset))
except Exception:
print(f"Error @ {i_shard}")
if __name__ == "__main__":
#example01()
#example02()
example03()
#example04()

View file

@ -0,0 +1,32 @@
import os
import subprocess
import time
import fire
class Checker(object):
def __init__(self, filename, interval=60):
self._cached_stamp = 0
self.filename = filename
self.interval = interval
def check(self, cmd):
while True:
stamp = os.stat(self.filename).st_mtime
if stamp != self._cached_stamp:
self._cached_stamp = stamp
print(f"{self.__class__.__name__}: Detected a new file at {self.filename}, running evaluation commands on it.")
subprocess.run(cmd, shell=True)
else:
time.sleep(self.interval)
def run(filename, cmd):
checker = Checker(filename, interval=60)
checker.check(cmd)
if __name__ == "__main__":
fire.Fire(run)

16
scripts/printckpt.py Normal file
View file

@ -0,0 +1,16 @@
import os
import torch
import fire
def printit(p):
print(f"printin' in path: {p}")
size_initial = os.path.getsize(p)
nsd = dict()
sd = torch.load(p, map_location="cpu")
if "global_step" in sd:
print(f"This is global step {sd['global_step']}.")
if __name__ == "__main__":
fire.Fire(printit)

View file

@ -14,6 +14,8 @@ def prune_it(p):
nsd[k] = sd[k] nsd[k] = sd[k]
else: else:
print(f"removing optimizer states for path {p}") print(f"removing optimizer states for path {p}")
if "global_step" in sd:
print(f"This is global step {sd['global_step']}.")
fn = f"{os.path.splitext(p)[0]}-pruned.ckpt" fn = f"{os.path.splitext(p)[0]}-pruned.ckpt"
print(f"saving pruned checkpoint at: {fn}") print(f"saving pruned checkpoint at: {fn}")
torch.save(nsd, fn) torch.save(nsd, fn)

View file

@ -0,0 +1,46 @@
#!/bin/bash
# mpi version for node rank
H=`hostname`
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
export NODE_RANK=${THEID}
echo THEID=$THEID
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
#conda activate stable
conda activate torch111
cd /fsx/stable-diffusion/stable-diffusion
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml"
# resume and set new seed to reshuffle data
#EXTRA="--seed 718 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints2/v1pp/v1pp-flatline.ckpt"
EXTRA="--seed 718 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T07-45-07_v1_improvedaesthetics/checkpoints/last.ckpt"
# only images >= 512 and pwatermark <= 0.4999
EXTRA="${EXTRA} data.params.min_size=512 data.params.max_pwatermark=0.4999"
# postfix
EXTRA="${EXTRA} -f v1_iahr_torch111"
# time to decay
#EXTRA="${EXTRA} model.params.scheduler_config.params.cycle_lengths=[50000] model.params.scheduler_config.params.f_min=[1e-6]"
# custom logdir
#EXTRA="${EXTRA} --logdir rlogs"
# debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -0,0 +1,43 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-v1-iahr-torch111
#SBATCH --nodes 32
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-gpu=4
#SBATCH --gres=gpu:8
#SBATCH --exclusive
#SBATCH --output=%x_%j.out
#SBATCH --comment "Key=Monitoring,Value=ON"
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
#all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# sent to sub script
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
export WORLD_SIZE=$COUNT_NODE
echo go $COUNT_NODE
echo $HOSTNAMES
echo $WORLD_SIZE
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v1_iahr_torch111/launcher.sh

View file

@ -22,7 +22,10 @@ cd /fsx/stable-diffusion/stable-diffusion
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml" CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml"
# resume and set new seed to reshuffle data # resume and set new seed to reshuffle data
EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/logs/2022-07-11T20-16-11_txt2img-1p4B-multinode-clip-encoder-high-res-512_improvedaesthetic/checkpoints/last.ckpt" #EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/logs/2022-07-11T20-16-11_txt2img-1p4B-multinode-clip-encoder-high-res-512_improvedaesthetic/checkpoints/last.ckpt"
EXTRA="--seed 715 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/logs/2022-07-14T23-26-13_v1_improvedaesthetics/checkpoints/last.ckpt"
# time to decay
EXTRA="${EXTRA} model.params.scheduler_config.params.cycle_lengths=[50000] model.params.scheduler_config.params.f_min=[1e-6]"
# custom logdir # custom logdir
#EXTRA="${EXTRA} --logdir rlogs" #EXTRA="${EXTRA} --logdir rlogs"

View file

@ -0,0 +1,38 @@
#!/bin/bash
# mpi version for node rank
H=`hostname`
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
export NODE_RANK=${THEID}
echo THEID=$THEID
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
conda activate torch111
cd /fsx/stable-diffusion/stable-diffusion
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml"
# resume and set new seed to reshuffle data
#EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/logs/2022-07-11T20-16-11_txt2img-1p4B-multinode-clip-encoder-high-res-512_improvedaesthetic/checkpoints/last.ckpt"
#EXTRA="--seed 715 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/logs/2022-07-14T23-26-13_v1_improvedaesthetics/checkpoints/last.ckpt"
#EXTRA="--seed 716 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-18T23-11-11_v1_improvedaesthetics/checkpoints/last.ckpt"
EXTRA="--seed 717 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-19T19-03-04_v1_improvedaesthetics/checkpoints/last.ckpt"
# time to decay
EXTRA="${EXTRA} model.params.scheduler_config.params.cycle_lengths=[50000] model.params.scheduler_config.params.f_min=[1e-6]"
# custom logdir
#EXTRA="${EXTRA} --logdir rlogs"
# debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -0,0 +1,42 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-v1-improvedaesthetics-torch111
#SBATCH --nodes 20
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-gpu=4
#SBATCH --gres=gpu:8
#SBATCH --exclusive
#SBATCH --output=%x_%j.out
#SBATCH --comment "Key=Monitoring,Value=ON"
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# sent to sub script
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
export WORLD_SIZE=$COUNT_NODE
echo go $COUNT_NODE
echo $HOSTNAMES
echo $WORLD_SIZE
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v1_improvedaesthetics_torch111/launcher.sh

View file

@ -0,0 +1,36 @@
#!/bin/bash
# mpi version for node rank
H=`hostname`
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
export NODE_RANK=${THEID}
echo THEID=$THEID
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
conda activate torch111
cd /fsx/stable-diffusion/stable-diffusion
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_laionhr.yaml"
# resume and set new seed to reshuffle data
EXTRA="--seed 718 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints2/v1pp/v1pp-flatline.ckpt"
# time to decay
#EXTRA="${EXTRA} model.params.scheduler_config.params.cycle_lengths=[50000] model.params.scheduler_config.params.f_min=[1e-6]"
# custom logdir
#EXTRA="${EXTRA} --logdir rlogs"
# debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -0,0 +1,42 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-v1-laionhr-torch111
#SBATCH --nodes 20
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-gpu=4
#SBATCH --gres=gpu:8
#SBATCH --exclusive
#SBATCH --output=%x_%j.out
#SBATCH --comment "Key=Monitoring,Value=ON"
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# sent to sub script
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
export WORLD_SIZE=$COUNT_NODE
echo go $COUNT_NODE
echo $HOSTNAMES
echo $WORLD_SIZE
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v1_laionhr_torch111/launcher.sh

View file

@ -16,13 +16,16 @@ echo "##########################################"
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3 # no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt # env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)" eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
conda activate stable #conda activate stable
# torch 1.11 to avoid bug in ckpt restoring
conda activate torch111
cd /fsx/stable-diffusion/stable-diffusion cd /fsx/stable-diffusion/stable-diffusion
CONFIG=configs/stable-diffusion/v3_pretraining.yaml CONFIG=configs/stable-diffusion/v3_pretraining.yaml
# resume and set new seed to reshuffle data # resume and set new seed to reshuffle data
EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/rlogs/2022-07-11T22-57-10_txt2img-v2-clip-encoder-improved_aesthetics-256/checkpoints/last.ckpt" #EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/rlogs/2022-07-11T22-57-10_txt2img-v2-clip-encoder-improved_aesthetics-256/checkpoints/last.ckpt"
EXTRA="--seed 715 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-14T21-03-49_txt2img-v2-clip-encoder-improved_aesthetics-256/checkpoints/last.ckpt"
# custom logdir # custom logdir
#EXTRA="${EXTRA} --logdir rlogs" #EXTRA="${EXTRA} --logdir rlogs"
@ -30,4 +33,7 @@ EXTRA="--seed 714 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/
# debugging # debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50" #EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
# detect bad gpus early on
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -11,8 +11,7 @@
module load intelmpi module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so" export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"

30
scripts/test_gpu.py Normal file
View file

@ -0,0 +1,30 @@
import socket
try:
import torch
n_gpus = torch.cuda.device_count()
print(f"checking {n_gpus} gpus.")
for i_gpu in range(n_gpus):
print(i_gpu)
device = torch.device(f"cuda:{i_gpu}")
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
torch.backends.cudnn.allow_tf32 = True
data = torch.randn([4, 640, 32, 32], dtype=torch.float, device=device, requires_grad=True)
net = torch.nn.Conv2d(640, 640, kernel_size=[3, 3], padding=[1, 1], stride=[1, 1], dilation=[1, 1], groups=1)
net = net.to(device=device).float()
out = net(data)
out.backward(torch.randn_like(out))
torch.cuda.synchronize()
except RuntimeError as err:
import requests
import datetime
import os
device = os.environ.get("CUDA_VISIBLE_DEVICES", "?")
hostname = socket.gethostname()
ts = datetime.datetime.utcnow().strftime('%Y-%m-%d %H:%M:%S')
resp = requests.get('http://169.254.169.254/latest/meta-data/instance-id')
print(f'ERROR at {ts} on {hostname}/{resp.text} (CUDA_VISIBLE_DEVICES={device}): {type(err).__name__}: {err}', flush=True)
raise err
else:
print(f"checked {socket.gethostname()}")

5
scripts/test_gpu.sh Normal file
View file

@ -0,0 +1,5 @@
#!/bin/bash
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
conda activate stable
cd /fsx/stable-diffusion/stable-diffusion
python scripts/test_gpu.py