better init image handling
This commit is contained in:
parent
4358de0a9a
commit
a416813c32
1 changed files with 57 additions and 54 deletions
|
@ -1,6 +1,7 @@
|
|||
"""make variations of input image"""
|
||||
|
||||
import argparse, os, sys, glob
|
||||
import PIL
|
||||
import torch
|
||||
import numpy as np
|
||||
from omegaconf import OmegaConf
|
||||
|
@ -9,6 +10,8 @@ from tqdm import tqdm, trange
|
|||
from itertools import islice
|
||||
from einops import rearrange, repeat
|
||||
from torchvision.utils import make_grid
|
||||
from torch import autocast
|
||||
from contextlib import nullcontext
|
||||
import time
|
||||
from pytorch_lightning import seed_everything
|
||||
|
||||
|
@ -43,8 +46,12 @@ def load_model_from_config(config, ckpt, verbose=False):
|
|||
|
||||
|
||||
def load_img(path):
|
||||
image = np.array(Image.open(path).convert("RGB"))
|
||||
image = image.astype(np.float32) / 255.0
|
||||
image = Image.open(path).convert("RGB")
|
||||
w, h = image.size
|
||||
print(f"loaded input image of size ({w}, {h}) from {path}")
|
||||
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
||||
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
|
||||
image = np.array(image).astype(np.float32) / 255.0
|
||||
image = image[None].transpose(0, 3, 1, 2)
|
||||
image = torch.from_numpy(image)
|
||||
return 2.*image - 1.
|
||||
|
@ -119,20 +126,6 @@ def main():
|
|||
help="sample this often",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--H",
|
||||
type=int,
|
||||
default=256,
|
||||
help="image height, in pixel space",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--W",
|
||||
type=int,
|
||||
default=256,
|
||||
help="image width, in pixel space",
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--C",
|
||||
type=int,
|
||||
|
@ -149,7 +142,7 @@ def main():
|
|||
parser.add_argument(
|
||||
"--n_samples",
|
||||
type=int,
|
||||
default=8,
|
||||
default=2,
|
||||
help="how many samples to produce for each given prompt. A.k.a batch size",
|
||||
)
|
||||
|
||||
|
@ -170,7 +163,7 @@ def main():
|
|||
parser.add_argument(
|
||||
"--strength",
|
||||
type=float,
|
||||
default=0.3,
|
||||
default=0.75,
|
||||
help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
|
||||
)
|
||||
|
||||
|
@ -197,6 +190,14 @@ def main():
|
|||
default=42,
|
||||
help="the seed (for reproducible sampling)",
|
||||
)
|
||||
parser.add_argument(
|
||||
"--precision",
|
||||
type=str,
|
||||
help="evaluate at this precision",
|
||||
choices=["full", "autocast"],
|
||||
default="autocast"
|
||||
)
|
||||
|
||||
opt = parser.parse_args()
|
||||
seed_everything(opt.seed)
|
||||
|
||||
|
@ -244,7 +245,9 @@ def main():
|
|||
t_enc = int(opt.strength * opt.ddim_steps)
|
||||
print(f"target t_enc is {t_enc} steps")
|
||||
|
||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
||||
with torch.no_grad():
|
||||
with precision_scope("cuda"):
|
||||
with model.ema_scope():
|
||||
tic = time.time()
|
||||
all_samples = list()
|
||||
|
@ -288,7 +291,7 @@ def main():
|
|||
toc = time.time()
|
||||
|
||||
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
|
||||
f"Sampling took {toc - tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
|
||||
f"Sampling took {toc - tic}s, i.e., produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
|
||||
f" \nEnjoy.")
|
||||
|
||||
|
||||
|
|
Loading…
Reference in a new issue