better init image handling

This commit is contained in:
Robin Rombach 2022-08-01 00:14:18 +02:00
parent 4358de0a9a
commit a416813c32

View file

@ -1,6 +1,7 @@
"""make variations of input image"""
import argparse, os, sys, glob
import PIL
import torch
import numpy as np
from omegaconf import OmegaConf
@ -9,6 +10,8 @@ from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange, repeat
from torchvision.utils import make_grid
from torch import autocast
from contextlib import nullcontext
import time
from pytorch_lightning import seed_everything
@ -43,8 +46,12 @@ def load_model_from_config(config, ckpt, verbose=False):
def load_img(path):
image = np.array(Image.open(path).convert("RGB"))
image = image.astype(np.float32) / 255.0
image = Image.open(path).convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h}) from {path}")
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image - 1.
@ -119,20 +126,6 @@ def main():
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=256,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=256,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
@ -149,7 +142,7 @@ def main():
parser.add_argument(
"--n_samples",
type=int,
default=8,
default=2,
help="how many samples to produce for each given prompt. A.k.a batch size",
)
@ -170,7 +163,7 @@ def main():
parser.add_argument(
"--strength",
type=float,
default=0.3,
default=0.75,
help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
)
@ -197,6 +190,14 @@ def main():
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
opt = parser.parse_args()
seed_everything(opt.seed)
@ -244,7 +245,9 @@ def main():
t_enc = int(opt.strength * opt.ddim_steps)
print(f"target t_enc is {t_enc} steps")
precision_scope = autocast if opt.precision == "autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
tic = time.time()
all_samples = list()
@ -288,7 +291,7 @@ def main():
toc = time.time()
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f"Sampling took {toc - tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
f"Sampling took {toc - tic}s, i.e., produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
f" \nEnjoy.")