Merge remote-tracking branch 'origin/main'
This commit is contained in:
commit
a166aa7fbf
5 changed files with 236 additions and 4 deletions
|
@ -0,0 +1,156 @@
|
||||||
|
model:
|
||||||
|
base_learning_rate: 7.5e-05
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 64
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: false # Note: different from the one we trained before
|
||||||
|
conditioning_key: hybrid # important
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.18215
|
||||||
|
ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints/v1pp/v1pphrflatlined2-pruned.ckpt"
|
||||||
|
|
||||||
|
ucg_training:
|
||||||
|
txt:
|
||||||
|
p: 0.1
|
||||||
|
val: ""
|
||||||
|
|
||||||
|
scheduler_config: # 10000 warmup steps
|
||||||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||||
|
params:
|
||||||
|
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
|
||||||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||||
|
f_start: [ 1.e-6 ]
|
||||||
|
f_max: [ 1. ]
|
||||||
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 32 # unused
|
||||||
|
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 768
|
||||||
|
use_checkpoint: True
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||||
|
|
||||||
|
|
||||||
|
data:
|
||||||
|
target: ldm.data.laion.WebDataModuleFromConfig
|
||||||
|
params:
|
||||||
|
tar_base: "__improvedaesthetic__"
|
||||||
|
batch_size: 2
|
||||||
|
num_workers: 4
|
||||||
|
multinode: True
|
||||||
|
min_size: 512
|
||||||
|
max_pwatermark: 0.8
|
||||||
|
train:
|
||||||
|
shards: '{00000..17279}.tar -'
|
||||||
|
shuffle: 10000
|
||||||
|
image_key: jpg
|
||||||
|
image_transforms:
|
||||||
|
- target: torchvision.transforms.Resize
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
interpolation: 3
|
||||||
|
- target: torchvision.transforms.RandomCrop
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
postprocess:
|
||||||
|
target: ldm.data.laion.AddMask
|
||||||
|
params:
|
||||||
|
mode: "512train-large"
|
||||||
|
p_drop: 0.25
|
||||||
|
|
||||||
|
# NOTE use enough shards to avoid empty validation loops in workers
|
||||||
|
validation:
|
||||||
|
shards: '{17280..17535}.tar -'
|
||||||
|
shuffle: 0
|
||||||
|
image_key: jpg
|
||||||
|
image_transforms:
|
||||||
|
- target: torchvision.transforms.Resize
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
interpolation: 3
|
||||||
|
- target: torchvision.transforms.CenterCrop
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
postprocess:
|
||||||
|
target: ldm.data.laion.AddMask
|
||||||
|
params:
|
||||||
|
mode: "512train-large"
|
||||||
|
p_drop: 0.25
|
||||||
|
|
||||||
|
|
||||||
|
lightning:
|
||||||
|
find_unused_parameters: False
|
||||||
|
|
||||||
|
modelcheckpoint:
|
||||||
|
params:
|
||||||
|
every_n_train_steps: 2000
|
||||||
|
|
||||||
|
callbacks:
|
||||||
|
image_logger:
|
||||||
|
target: main.ImageLogger
|
||||||
|
params:
|
||||||
|
disabled: False
|
||||||
|
batch_frequency: 1000
|
||||||
|
max_images: 4
|
||||||
|
increase_log_steps: False
|
||||||
|
log_first_step: False
|
||||||
|
log_images_kwargs:
|
||||||
|
use_ema_scope: False
|
||||||
|
inpaint: False
|
||||||
|
plot_progressive_rows: False
|
||||||
|
plot_diffusion_rows: False
|
||||||
|
N: 4
|
||||||
|
unconditional_guidance_scale: 3.0
|
||||||
|
unconditional_guidance_label: [""]
|
||||||
|
ddim_steps: 100 # todo check these out for inpainting,
|
||||||
|
ddim_eta: 1.0 # todo check these out for inpainting,
|
||||||
|
|
||||||
|
trainer:
|
||||||
|
benchmark: True
|
||||||
|
val_check_interval: 5000000 # really sorry
|
||||||
|
num_sanity_val_steps: 0
|
||||||
|
accumulate_grad_batches: 2
|
|
@ -242,15 +242,18 @@ class AddLR(object):
|
||||||
|
|
||||||
|
|
||||||
class AddMask(PRNGMixin):
|
class AddMask(PRNGMixin):
|
||||||
def __init__(self, mode="512train"):
|
def __init__(self, mode="512train", p_drop=0.):
|
||||||
super().__init__()
|
super().__init__()
|
||||||
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
||||||
self.make_mask = MASK_MODES[mode]
|
self.make_mask = MASK_MODES[mode]
|
||||||
|
self.p_drop = p_drop
|
||||||
|
|
||||||
def __call__(self, sample):
|
def __call__(self, sample):
|
||||||
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
||||||
x = sample['jpg']
|
x = sample['jpg']
|
||||||
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
||||||
|
if self.prng.choice(2, p=[1 - self.p_drop, self.p_drop]):
|
||||||
|
mask = np.ones_like(mask)
|
||||||
mask[mask < 0.5] = 0
|
mask[mask < 0.5] = 0
|
||||||
mask[mask > 0.5] = 1
|
mask[mask > 0.5] = 1
|
||||||
mask = torch.from_numpy(mask[..., None])
|
mask = torch.from_numpy(mask[..., None])
|
||||||
|
|
|
@ -122,7 +122,6 @@ class DDPM(pl.LightningModule):
|
||||||
if self.ucg_training:
|
if self.ucg_training:
|
||||||
self.ucg_prng = np.random.RandomState()
|
self.ucg_prng = np.random.RandomState()
|
||||||
|
|
||||||
|
|
||||||
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
||||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||||
if exists(given_betas):
|
if exists(given_betas):
|
||||||
|
@ -1603,7 +1602,9 @@ class LatentInpaintDiffusion(LatentDiffusion):
|
||||||
To disable finetuning mode, set finetune_keys to None
|
To disable finetuning mode, set finetune_keys to None
|
||||||
"""
|
"""
|
||||||
def __init__(self,
|
def __init__(self,
|
||||||
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight", "model_ema.diffusion_modelinput_blocks00weight"),
|
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight",
|
||||||
|
"model_ema.diffusion_modelinput_blocks00weight"
|
||||||
|
),
|
||||||
concat_keys=("mask", "masked_image"),
|
concat_keys=("mask", "masked_image"),
|
||||||
masked_image_key="masked_image",
|
masked_image_key="masked_image",
|
||||||
keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
|
keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
|
||||||
|
@ -1657,7 +1658,7 @@ class LatentInpaintDiffusion(LatentDiffusion):
|
||||||
@torch.no_grad()
|
@torch.no_grad()
|
||||||
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
||||||
# note: restricted to non-trainable encoders currently
|
# note: restricted to non-trainable encoders currently
|
||||||
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpaiting'
|
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpainting'
|
||||||
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
||||||
force_c_encode=True, return_original_cond=True, bs=bs)
|
force_c_encode=True, return_original_cond=True, bs=bs)
|
||||||
|
|
||||||
|
|
30
scripts/slurm/v1_inpainting_aesthetics-larger-masks-ucg/launcher.sh
Executable file
30
scripts/slurm/v1_inpainting_aesthetics-larger-masks-ucg/launcher.sh
Executable file
|
@ -0,0 +1,30 @@
|
||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
# mpi version for node rank
|
||||||
|
H=`hostname`
|
||||||
|
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
|
||||||
|
export NODE_RANK=${THEID}
|
||||||
|
echo THEID=$THEID
|
||||||
|
|
||||||
|
echo "##########################################"
|
||||||
|
echo MASTER_ADDR=${MASTER_ADDR}
|
||||||
|
echo MASTER_PORT=${MASTER_PORT}
|
||||||
|
echo NODE_RANK=${NODE_RANK}
|
||||||
|
echo WORLD_SIZE=${WORLD_SIZE}
|
||||||
|
echo "##########################################"
|
||||||
|
# debug environment worked great so we stick with it
|
||||||
|
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
|
||||||
|
# env with pip dependencies from stable diffusion's requirements.txt
|
||||||
|
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
|
||||||
|
conda activate stable
|
||||||
|
cd /fsx/robin/stable-diffusion/stable-diffusion
|
||||||
|
|
||||||
|
CONFIG="/fsx/robin/stable-diffusion/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-aesthetic-larger-masks-and-ucfg.yaml"
|
||||||
|
|
||||||
|
# debugging
|
||||||
|
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
|
||||||
|
|
||||||
|
# detect bad gpus early on
|
||||||
|
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
|
||||||
|
|
||||||
|
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False
|
42
scripts/slurm/v1_inpainting_aesthetics-larger-masks-ucg/sbatch.sh
Executable file
42
scripts/slurm/v1_inpainting_aesthetics-larger-masks-ucg/sbatch.sh
Executable file
|
@ -0,0 +1,42 @@
|
||||||
|
#!/bin/bash
|
||||||
|
#SBATCH --partition=compute-od-gpu
|
||||||
|
#SBATCH --job-name=stable-diffusion-v1-v1_inpainting_aesthetics-larger-masks
|
||||||
|
#SBATCH --nodes 32
|
||||||
|
#SBATCH --ntasks-per-node 1
|
||||||
|
#SBATCH --cpus-per-gpu=4
|
||||||
|
#SBATCH --gres=gpu:8
|
||||||
|
#SBATCH --exclusive
|
||||||
|
#SBATCH --output=%x_%j.out
|
||||||
|
#SBATCH --comment "Key=Monitoring,Value=ON"
|
||||||
|
|
||||||
|
module load intelmpi
|
||||||
|
source /opt/intel/mpi/latest/env/vars.sh
|
||||||
|
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
|
||||||
|
all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
|
||||||
|
export NCCL_PROTO=simple
|
||||||
|
export PATH=/opt/amazon/efa/bin:$PATH
|
||||||
|
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
|
||||||
|
export FI_EFA_FORK_SAFE=1
|
||||||
|
export FI_LOG_LEVEL=1
|
||||||
|
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
|
||||||
|
export NCCL_DEBUG=info
|
||||||
|
export PYTHONFAULTHANDLER=1
|
||||||
|
export CUDA_LAUNCH_BLOCKING=0
|
||||||
|
export OMPI_MCA_mtl_base_verbose=1
|
||||||
|
export FI_EFA_ENABLE_SHM_TRANSFER=0
|
||||||
|
export FI_PROVIDER=efa
|
||||||
|
export FI_EFA_TX_MIN_CREDITS=64
|
||||||
|
export NCCL_TREE_THRESHOLD=0
|
||||||
|
|
||||||
|
# sent to sub script
|
||||||
|
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
|
||||||
|
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||||
|
export MASTER_PORT=12802
|
||||||
|
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
|
||||||
|
export WORLD_SIZE=$COUNT_NODE
|
||||||
|
|
||||||
|
echo go $COUNT_NODE
|
||||||
|
echo $HOSTNAMES
|
||||||
|
echo $WORLD_SIZE
|
||||||
|
|
||||||
|
mpirun -n $COUNT_NODE -perhost 1 /fsx/robin/stable-diffusion/stable-diffusion/scripts/slurm/v1_inpainting_aesthetics-larger-masks-ucg/launcher.sh
|
Loading…
Reference in a new issue