Merge branch 'main' of github.com:pesser/stable-diffusion into main

This commit is contained in:
Robin Rombach 2022-08-03 23:30:17 +02:00
commit 9aa842c9bb
11 changed files with 553 additions and 4 deletions

View file

@ -0,0 +1,157 @@
model:
base_learning_rate: 7.5e-05
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 64
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: hybrid # important
monitor: val/loss_simple_ema
scale_factor: 0.18215
ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints/v1pp/v1pp-flatlined-hr.ckpt"
concat_keys:
- mask
- masked_image
- smoothing_strength
c_concat_log_start: 1
c_concat_log_end: 5
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 2500 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 10 # 4 data + 4 downscaled image + 1 mask + 1 strength
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: "__improvedaesthetic__"
batch_size: 2
num_workers: 4
multinode: True
min_size: 512
max_pwatermark: 0.8
train:
shards: '{00000..17279}.tar -'
shuffle: 10000
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 512
postprocess:
target: ldm.data.laion.AddEdge
params:
mode: "512train-large"
# NOTE use enough shards to avoid empty validation loops in workers
validation:
shards: '{17280..17535}.tar -'
shuffle: 0
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 512
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 512
postprocess:
target: ldm.data.laion.AddEdge
params:
mode: "512train-large"
lightning:
find_unused_parameters: False
modelcheckpoint:
params:
every_n_train_steps: 2000
callbacks:
image_logger:
target: main.ImageLogger
params:
disabled: False
batch_frequency: 1000
max_images: 4
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 4
unconditional_guidance_scale: 3.0
unconditional_guidance_label: [""]
ddim_steps: 100 # todo check these out for inpainting,
ddim_eta: 1.0 # todo check these out for inpainting,
trainer:
benchmark: True
val_check_interval: 5000000 # really sorry
num_sanity_val_steps: 0
accumulate_grad_batches: 2

View file

@ -0,0 +1,131 @@
model:
base_learning_rate: 1.0e-04
target: ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.001
linear_end: 0.015
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "jpg"
cond_stage_key: "txt"
image_size: 16
channels: 16
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: crossattn
monitor: val/loss_simple_ema
scale_factor: 0.22765929 # magic number
scheduler_config: # 10000 warmup steps
target: ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 10000 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 16 # not really needed
in_channels: 16
out_channels: 16
model_channels: 320 # TODO: scale model here
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 16
monitor: val/rec_loss
ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
ddconfig:
double_z: True
z_channels: 16
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
num_res_blocks: 2
attn_resolutions: [ 16 ]
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
data:
target: ldm.data.laion.WebDataModuleFromConfig
params:
tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
batch_size: 55
num_workers: 4
multinode: True
min_size: 256
train:
shards: '{000000..231317}.tar -'
shuffle: 10000
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 256
interpolation: 3
- target: torchvision.transforms.RandomCrop
params:
size: 256
# NOTE use enough shards to avoid empty validation loops in workers
validation:
shards: '{231318..231349}.tar -'
shuffle: 0
image_key: jpg
image_transforms:
- target: torchvision.transforms.Resize
params:
size: 256
interpolation: 3
- target: torchvision.transforms.CenterCrop
params:
size: 256
lightning:
find_unused_parameters: false
modelcheckpoint:
params:
every_n_train_steps: 5000
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 5000
max_images: 4
increase_log_steps: False
log_first_step: False
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 4
unconditional_guidance_scale: 3.0
unconditional_guidance_label: [""]
trainer:
benchmark: True
val_check_interval: 5000000 # really sorry
num_sanity_val_steps: 0
accumulate_grad_batches: 1

View file

@ -23,6 +23,7 @@ dependencies:
- torch-fidelity==0.3.0 - torch-fidelity==0.3.0
- transformers==4.3.1 - transformers==4.3.1
- webdataset==0.2.5 - webdataset==0.2.5
- kornia==0.6
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers - -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
- -e git+https://github.com/openai/CLIP.git@main#egg=clip - -e git+https://github.com/openai/CLIP.git@main#egg=clip
- -e . - -e .

View file

@ -1,4 +1,5 @@
import webdataset as wds import webdataset as wds
import kornia
from PIL import Image from PIL import Image
import io import io
import os import os
@ -185,10 +186,19 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
return loader return loader
def filter_size(self, x): def filter_size(self, x):
if self.min_size is None:
return True
try: try:
return x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size and x['json']['pwatermark'] <= self.max_pwatermark valid = True
if self.min_size is not None and self.min_size > 1:
try:
valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
except Exception:
valid = False
if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
try:
valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
except Exception:
valid = False
return valid
except Exception: except Exception:
return False return False
@ -252,6 +262,76 @@ class AddMask(PRNGMixin):
return sample return sample
class AddEdge(PRNGMixin):
def __init__(self, mode="512train", mask_edges=True):
super().__init__()
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
self.make_mask = MASK_MODES[mode]
self.n_down_choices = [0, 1, 2]
self.sigma_choices = [1, 2, 3, 4, 5]
self.mask_edges = mask_edges
@torch.no_grad()
def __call__(self, sample):
# sample['jpg'] is tensor hwc in [-1, 1] at this point
x = sample['jpg']
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
mask[mask < 0.5] = 0
mask[mask > 0.5] = 1
mask = torch.from_numpy(mask[..., None])
sample['mask'] = mask
n_down_idx = self.prng.choice(len(self.n_down_choices))
sigma_idx = self.prng.choice(len(self.sigma_choices))
n_choices = len(self.n_down_choices)*len(self.sigma_choices)
raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
(len(self.n_down_choices), len(self.sigma_choices)))
normalized_idx = raveled_idx/(n_choices-1)
n_down = self.n_down_choices[n_down_idx]
sigma = self.sigma_choices[sigma_idx]
kernel_size = 4*sigma+1
kernel_size = (kernel_size, kernel_size)
sigma = (sigma, sigma)
canny = kornia.filters.Canny(
low_threshold=0.1,
high_threshold=0.2,
kernel_size=kernel_size,
sigma=sigma,
hysteresis=True,
)
y = (x+1.0)/2.0 # in 01
y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
# down
for i_down in range(n_down):
size = min(y.shape[-2], y.shape[-1])//2
y = kornia.geometry.transform.resize(y, size, antialias=True)
# edge
_, y = canny(y)
if n_down > 0:
size = x.shape[0], x.shape[1]
y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
y = y*2.0-1.0
if self.mask_edges:
sample['masked_image'] = y * (mask < 0.5)
else:
sample['masked_image'] = y
# concat normalized idx
sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
return sample
def example00(): def example00():
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -" url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
dataset = wds.WebDataset(url) dataset = wds.WebDataset(url)

View file

@ -1608,6 +1608,8 @@ class LatentInpaintDiffusion(LatentDiffusion):
concat_keys=("mask", "masked_image"), concat_keys=("mask", "masked_image"),
masked_image_key="masked_image", masked_image_key="masked_image",
keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
c_concat_log_start=None, # to log reconstruction of c_concat codes
c_concat_log_end=None,
*args, **kwargs *args, **kwargs
): ):
ckpt_path = kwargs.pop("ckpt_path", None) ckpt_path = kwargs.pop("ckpt_path", None)
@ -1618,6 +1620,8 @@ class LatentInpaintDiffusion(LatentDiffusion):
self.finetune_keys = finetune_keys self.finetune_keys = finetune_keys
self.concat_keys = concat_keys self.concat_keys = concat_keys
self.keep_dims = keep_finetune_dims self.keep_dims = keep_finetune_dims
self.c_concat_log_start = c_concat_log_start
self.c_concat_log_end = c_concat_log_end
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint' if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
if exists(ckpt_path): if exists(ckpt_path):
self.init_from_ckpt(ckpt_path, ignore_keys) self.init_from_ckpt(ckpt_path, ignore_keys)
@ -1708,6 +1712,9 @@ class LatentInpaintDiffusion(LatentDiffusion):
if ismap(xc): if ismap(xc):
log["original_conditioning"] = self.to_rgb(xc) log["original_conditioning"] = self.to_rgb(xc)
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:,self.c_concat_log_start:self.c_concat_log_end])
if plot_diffusion_rows: if plot_diffusion_rows:
# get diffusion row # get diffusion row
diffusion_row = list() diffusion_row = list()

View file

@ -10,6 +10,8 @@ def printit(p):
sd = torch.load(p, map_location="cpu") sd = torch.load(p, map_location="cpu")
if "global_step" in sd: if "global_step" in sd:
print(f"This is global step {sd['global_step']}.") print(f"This is global step {sd['global_step']}.")
if "model_ema.num_updates" in sd["state_dict"]:
print(f"And we got {sd['state_dict']['model_ema.num_updates']} EMA updates.")
if __name__ == "__main__": if __name__ == "__main__":

View file

@ -0,0 +1,41 @@
#!/bin/bash
# mpi version for node rank
H=`hostname`
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
export NODE_RANK=${THEID}
echo THEID=$THEID
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
#conda activate stable
# torch 1.11 to avoid bug in ckpt restoring
conda activate torch111
cd /fsx/stable-diffusion/stable-diffusion
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/inpainting/v1-edgeinpainting.yaml"
# resume and set new seed to reshuffle data
#EXTRA="--seed 543 --resume_from_checkpoint ..."
# reduce lr a bit
#EXTRA="${EXTRA} model.params.scheduler_config.params.f_max=[0.75]"
# custom logdir
#EXTRA="${EXTRA} --logdir rlogs"
# debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
# detect bad gpus early on
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False

View file

@ -0,0 +1,42 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-v1-edgeinpainting
#SBATCH --nodes 24
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-gpu=4
#SBATCH --gres=gpu:8
#SBATCH --exclusive
#SBATCH --output=%x_%j.out
#SBATCH --comment "Key=Monitoring,Value=ON"
#SBATCH --no-requeue
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# sent to sub script
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
export WORLD_SIZE=$COUNT_NODE
echo go $COUNT_NODE
echo $HOSTNAMES
echo $WORLD_SIZE
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v1_edgeinpainting/launcher.sh

View file

@ -27,7 +27,8 @@ CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_impro
#EXTRA="--seed 718 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T07-45-07_v1_improvedaesthetics/checkpoints/last.ckpt" #EXTRA="--seed 718 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T07-45-07_v1_improvedaesthetics/checkpoints/last.ckpt"
#EXTRA="--seed 719 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T12-32-32_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt" #EXTRA="--seed 719 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T12-32-32_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
#EXTRA="--seed 720 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-23T07-52-21_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt" #EXTRA="--seed 720 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-23T07-52-21_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
EXTRA="--seed 721 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-24T19-07-33_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt" #EXTRA="--seed 721 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-24T19-07-33_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
EXTRA="--seed 722 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-29T10-26-01_v1_improvedaestheticsv1_iahr_torch111_ucg/checkpoints/last.ckpt"
# only images >= 512 and pwatermark <= 0.4999 # only images >= 512 and pwatermark <= 0.4999
EXTRA="${EXTRA} data.params.min_size=512 data.params.max_pwatermark=0.4999" EXTRA="${EXTRA} data.params.min_size=512 data.params.max_pwatermark=0.4999"
@ -35,6 +36,9 @@ EXTRA="${EXTRA} data.params.min_size=512 data.params.max_pwatermark=0.4999"
# unconditional guidance training # unconditional guidance training
EXTRA="${EXTRA} model.params.ucg_training.txt.p=0.1 model.params.ucg_training.txt.val=''" EXTRA="${EXTRA} model.params.ucg_training.txt.p=0.1 model.params.ucg_training.txt.val=''"
# reduce lr a bit
EXTRA="${EXTRA} model.params.scheduler_config.params.f_max=[0.5]"
# postfix # postfix
EXTRA="${EXTRA} -f v1_iahr_torch111_ucg" EXTRA="${EXTRA} -f v1_iahr_torch111_ucg"

View file

@ -0,0 +1,42 @@
#!/bin/bash
# mpi version for node rank
H=`hostname`
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
export NODE_RANK=${THEID}
echo THEID=$THEID
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
#conda activate stable
# torch 1.11 to avoid bug in ckpt restoring
conda activate torch111
cd /fsx/stable-diffusion/stable-diffusion
CONFIG=configs/stable-diffusion/v2_pretraining.yaml
# resume and set new seed to reshuffle data
#EXTRA="--seed 542 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints/v2-256/216k-256.ckpt"
EXTRA="--seed 543 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-31T23-35-31_v2_pretraining/checkpoints/last.ckpt"
# reduce lr a bit
#EXTRA="${EXTRA} model.params.scheduler_config.params.f_max=[0.75]"
# custom logdir
#EXTRA="${EXTRA} --logdir rlogs"
# debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
# detect bad gpus early on
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -0,0 +1,42 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-v2-pretraining
#SBATCH --nodes 32
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-gpu=4
#SBATCH --gres=gpu:8
#SBATCH --exclusive
#SBATCH --output=%x_%j.out
#SBATCH --comment "Key=Monitoring,Value=ON"
#SBATCH --no-requeue
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# sent to sub script
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
export WORLD_SIZE=$COUNT_NODE
echo go $COUNT_NODE
echo $HOSTNAMES
echo $WORLD_SIZE
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v2_pretraining/launcher.sh