Merge branch 'main' of github.com:pesser/stable-diffusion into main
This commit is contained in:
commit
9aa842c9bb
11 changed files with 553 additions and 4 deletions
157
configs/stable-diffusion/inpainting/v1-edgeinpainting.yaml
Normal file
157
configs/stable-diffusion/inpainting/v1-edgeinpainting.yaml
Normal file
|
@ -0,0 +1,157 @@
|
|||
model:
|
||||
base_learning_rate: 7.5e-05
|
||||
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||
params:
|
||||
linear_start: 0.00085
|
||||
linear_end: 0.0120
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 64
|
||||
channels: 4
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: hybrid # important
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.18215
|
||||
ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints/v1pp/v1pp-flatlined-hr.ckpt"
|
||||
|
||||
concat_keys:
|
||||
- mask
|
||||
- masked_image
|
||||
- smoothing_strength
|
||||
|
||||
c_concat_log_start: 1
|
||||
c_concat_log_end: 5
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 2500 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 32 # unused
|
||||
in_channels: 10 # 4 data + 4 downscaled image + 1 mask + 1 strength
|
||||
out_channels: 4
|
||||
model_channels: 320
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 4
|
||||
monitor: val/rec_loss
|
||||
ddconfig:
|
||||
double_z: true
|
||||
z_channels: 4
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult:
|
||||
- 1
|
||||
- 2
|
||||
- 4
|
||||
- 4
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: []
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
|
||||
|
||||
data:
|
||||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: "__improvedaesthetic__"
|
||||
batch_size: 2
|
||||
num_workers: 4
|
||||
multinode: True
|
||||
min_size: 512
|
||||
max_pwatermark: 0.8
|
||||
train:
|
||||
shards: '{00000..17279}.tar -'
|
||||
shuffle: 10000
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddEdge
|
||||
params:
|
||||
mode: "512train-large"
|
||||
|
||||
# NOTE use enough shards to avoid empty validation loops in workers
|
||||
validation:
|
||||
shards: '{17280..17535}.tar -'
|
||||
shuffle: 0
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 512
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.CenterCrop
|
||||
params:
|
||||
size: 512
|
||||
postprocess:
|
||||
target: ldm.data.laion.AddEdge
|
||||
params:
|
||||
mode: "512train-large"
|
||||
|
||||
|
||||
lightning:
|
||||
find_unused_parameters: False
|
||||
|
||||
modelcheckpoint:
|
||||
params:
|
||||
every_n_train_steps: 2000
|
||||
|
||||
callbacks:
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
params:
|
||||
disabled: False
|
||||
batch_frequency: 1000
|
||||
max_images: 4
|
||||
increase_log_steps: False
|
||||
log_first_step: False
|
||||
log_images_kwargs:
|
||||
use_ema_scope: False
|
||||
inpaint: False
|
||||
plot_progressive_rows: False
|
||||
plot_diffusion_rows: False
|
||||
N: 4
|
||||
unconditional_guidance_scale: 3.0
|
||||
unconditional_guidance_label: [""]
|
||||
ddim_steps: 100 # todo check these out for inpainting,
|
||||
ddim_eta: 1.0 # todo check these out for inpainting,
|
||||
|
||||
trainer:
|
||||
benchmark: True
|
||||
val_check_interval: 5000000 # really sorry
|
||||
num_sanity_val_steps: 0
|
||||
accumulate_grad_batches: 2
|
131
configs/stable-diffusion/v2_pretraining.yaml
Normal file
131
configs/stable-diffusion/v2_pretraining.yaml
Normal file
|
@ -0,0 +1,131 @@
|
|||
model:
|
||||
base_learning_rate: 1.0e-04
|
||||
target: ldm.models.diffusion.ddpm.LatentDiffusion
|
||||
params:
|
||||
linear_start: 0.001
|
||||
linear_end: 0.015
|
||||
num_timesteps_cond: 1
|
||||
log_every_t: 200
|
||||
timesteps: 1000
|
||||
first_stage_key: "jpg"
|
||||
cond_stage_key: "txt"
|
||||
image_size: 16
|
||||
channels: 16
|
||||
cond_stage_trainable: false # Note: different from the one we trained before
|
||||
conditioning_key: crossattn
|
||||
monitor: val/loss_simple_ema
|
||||
scale_factor: 0.22765929 # magic number
|
||||
|
||||
scheduler_config: # 10000 warmup steps
|
||||
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||
params:
|
||||
warm_up_steps: [ 10000 ]
|
||||
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||
f_start: [ 1.e-6 ]
|
||||
f_max: [ 1. ]
|
||||
f_min: [ 1. ]
|
||||
|
||||
unet_config:
|
||||
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||
params:
|
||||
image_size: 16 # not really needed
|
||||
in_channels: 16
|
||||
out_channels: 16
|
||||
model_channels: 320 # TODO: scale model here
|
||||
attention_resolutions: [ 4, 2, 1 ]
|
||||
num_res_blocks: 2
|
||||
channel_mult: [ 1, 2, 4, 4 ]
|
||||
num_heads: 8
|
||||
use_spatial_transformer: True
|
||||
transformer_depth: 1
|
||||
context_dim: 768
|
||||
use_checkpoint: True
|
||||
legacy: False
|
||||
|
||||
first_stage_config:
|
||||
target: ldm.models.autoencoder.AutoencoderKL
|
||||
params:
|
||||
embed_dim: 16
|
||||
monitor: val/rec_loss
|
||||
ckpt_path: "models/first_stage_models/kl-f16/model.ckpt"
|
||||
ddconfig:
|
||||
double_z: True
|
||||
z_channels: 16
|
||||
resolution: 256
|
||||
in_channels: 3
|
||||
out_ch: 3
|
||||
ch: 128
|
||||
ch_mult: [ 1,1,2,2,4 ] # num_down = len(ch_mult)-1
|
||||
num_res_blocks: 2
|
||||
attn_resolutions: [ 16 ]
|
||||
dropout: 0.0
|
||||
lossconfig:
|
||||
target: torch.nn.Identity
|
||||
|
||||
cond_stage_config:
|
||||
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||
|
||||
|
||||
data:
|
||||
target: ldm.data.laion.WebDataModuleFromConfig
|
||||
params:
|
||||
tar_base: "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/"
|
||||
batch_size: 55
|
||||
num_workers: 4
|
||||
multinode: True
|
||||
min_size: 256
|
||||
train:
|
||||
shards: '{000000..231317}.tar -'
|
||||
shuffle: 10000
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 256
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.RandomCrop
|
||||
params:
|
||||
size: 256
|
||||
|
||||
# NOTE use enough shards to avoid empty validation loops in workers
|
||||
validation:
|
||||
shards: '{231318..231349}.tar -'
|
||||
shuffle: 0
|
||||
image_key: jpg
|
||||
image_transforms:
|
||||
- target: torchvision.transforms.Resize
|
||||
params:
|
||||
size: 256
|
||||
interpolation: 3
|
||||
- target: torchvision.transforms.CenterCrop
|
||||
params:
|
||||
size: 256
|
||||
|
||||
|
||||
lightning:
|
||||
find_unused_parameters: false
|
||||
modelcheckpoint:
|
||||
params:
|
||||
every_n_train_steps: 5000
|
||||
callbacks:
|
||||
image_logger:
|
||||
target: main.ImageLogger
|
||||
params:
|
||||
batch_frequency: 5000
|
||||
max_images: 4
|
||||
increase_log_steps: False
|
||||
log_first_step: False
|
||||
log_images_kwargs:
|
||||
use_ema_scope: False
|
||||
inpaint: False
|
||||
plot_progressive_rows: False
|
||||
plot_diffusion_rows: False
|
||||
N: 4
|
||||
unconditional_guidance_scale: 3.0
|
||||
unconditional_guidance_label: [""]
|
||||
|
||||
trainer:
|
||||
benchmark: True
|
||||
val_check_interval: 5000000 # really sorry
|
||||
num_sanity_val_steps: 0
|
||||
accumulate_grad_batches: 1
|
|
@ -23,6 +23,7 @@ dependencies:
|
|||
- torch-fidelity==0.3.0
|
||||
- transformers==4.3.1
|
||||
- webdataset==0.2.5
|
||||
- kornia==0.6
|
||||
- -e git+https://github.com/CompVis/taming-transformers.git@master#egg=taming-transformers
|
||||
- -e git+https://github.com/openai/CLIP.git@main#egg=clip
|
||||
- -e .
|
||||
|
|
|
@ -1,4 +1,5 @@
|
|||
import webdataset as wds
|
||||
import kornia
|
||||
from PIL import Image
|
||||
import io
|
||||
import os
|
||||
|
@ -185,10 +186,19 @@ class WebDataModuleFromConfig(pl.LightningDataModule):
|
|||
return loader
|
||||
|
||||
def filter_size(self, x):
|
||||
if self.min_size is None:
|
||||
return True
|
||||
try:
|
||||
return x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size and x['json']['pwatermark'] <= self.max_pwatermark
|
||||
valid = True
|
||||
if self.min_size is not None and self.min_size > 1:
|
||||
try:
|
||||
valid = valid and x['json']['original_width'] >= self.min_size and x['json']['original_height'] >= self.min_size
|
||||
except Exception:
|
||||
valid = False
|
||||
if self.max_pwatermark is not None and self.max_pwatermark < 1.0:
|
||||
try:
|
||||
valid = valid and x['json']['pwatermark'] <= self.max_pwatermark
|
||||
except Exception:
|
||||
valid = False
|
||||
return valid
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
|
@ -252,6 +262,76 @@ class AddMask(PRNGMixin):
|
|||
return sample
|
||||
|
||||
|
||||
class AddEdge(PRNGMixin):
|
||||
def __init__(self, mode="512train", mask_edges=True):
|
||||
super().__init__()
|
||||
assert mode in list(MASK_MODES.keys()), f'unknown mask generation mode "{mode}"'
|
||||
self.make_mask = MASK_MODES[mode]
|
||||
self.n_down_choices = [0, 1, 2]
|
||||
self.sigma_choices = [1, 2, 3, 4, 5]
|
||||
self.mask_edges = mask_edges
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(self, sample):
|
||||
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
||||
x = sample['jpg']
|
||||
|
||||
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
||||
mask[mask < 0.5] = 0
|
||||
mask[mask > 0.5] = 1
|
||||
mask = torch.from_numpy(mask[..., None])
|
||||
sample['mask'] = mask
|
||||
|
||||
n_down_idx = self.prng.choice(len(self.n_down_choices))
|
||||
sigma_idx = self.prng.choice(len(self.sigma_choices))
|
||||
|
||||
n_choices = len(self.n_down_choices)*len(self.sigma_choices)
|
||||
raveled_idx = np.ravel_multi_index((n_down_idx, sigma_idx),
|
||||
(len(self.n_down_choices), len(self.sigma_choices)))
|
||||
normalized_idx = raveled_idx/(n_choices-1)
|
||||
|
||||
n_down = self.n_down_choices[n_down_idx]
|
||||
sigma = self.sigma_choices[sigma_idx]
|
||||
|
||||
kernel_size = 4*sigma+1
|
||||
kernel_size = (kernel_size, kernel_size)
|
||||
sigma = (sigma, sigma)
|
||||
canny = kornia.filters.Canny(
|
||||
low_threshold=0.1,
|
||||
high_threshold=0.2,
|
||||
kernel_size=kernel_size,
|
||||
sigma=sigma,
|
||||
hysteresis=True,
|
||||
)
|
||||
y = (x+1.0)/2.0 # in 01
|
||||
y = y.unsqueeze(0).permute(0, 3, 1, 2).contiguous()
|
||||
|
||||
# down
|
||||
for i_down in range(n_down):
|
||||
size = min(y.shape[-2], y.shape[-1])//2
|
||||
y = kornia.geometry.transform.resize(y, size, antialias=True)
|
||||
|
||||
# edge
|
||||
_, y = canny(y)
|
||||
|
||||
if n_down > 0:
|
||||
size = x.shape[0], x.shape[1]
|
||||
y = kornia.geometry.transform.resize(y, size, interpolation="nearest")
|
||||
|
||||
y = y.permute(0, 2, 3, 1)[0].expand(-1, -1, 3).contiguous()
|
||||
y = y*2.0-1.0
|
||||
|
||||
if self.mask_edges:
|
||||
sample['masked_image'] = y * (mask < 0.5)
|
||||
else:
|
||||
sample['masked_image'] = y
|
||||
|
||||
# concat normalized idx
|
||||
sample['smoothing_strength'] = torch.ones_like(sample['mask'])*normalized_idx
|
||||
|
||||
return sample
|
||||
|
||||
|
||||
def example00():
|
||||
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
||||
dataset = wds.WebDataset(url)
|
||||
|
|
|
@ -1608,6 +1608,8 @@ class LatentInpaintDiffusion(LatentDiffusion):
|
|||
concat_keys=("mask", "masked_image"),
|
||||
masked_image_key="masked_image",
|
||||
keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
|
||||
c_concat_log_start=None, # to log reconstruction of c_concat codes
|
||||
c_concat_log_end=None,
|
||||
*args, **kwargs
|
||||
):
|
||||
ckpt_path = kwargs.pop("ckpt_path", None)
|
||||
|
@ -1618,6 +1620,8 @@ class LatentInpaintDiffusion(LatentDiffusion):
|
|||
self.finetune_keys = finetune_keys
|
||||
self.concat_keys = concat_keys
|
||||
self.keep_dims = keep_finetune_dims
|
||||
self.c_concat_log_start = c_concat_log_start
|
||||
self.c_concat_log_end = c_concat_log_end
|
||||
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
|
||||
if exists(ckpt_path):
|
||||
self.init_from_ckpt(ckpt_path, ignore_keys)
|
||||
|
@ -1708,6 +1712,9 @@ class LatentInpaintDiffusion(LatentDiffusion):
|
|||
if ismap(xc):
|
||||
log["original_conditioning"] = self.to_rgb(xc)
|
||||
|
||||
if not (self.c_concat_log_start is None and self.c_concat_log_end is None):
|
||||
log["c_concat_decoded"] = self.decode_first_stage(c_cat[:,self.c_concat_log_start:self.c_concat_log_end])
|
||||
|
||||
if plot_diffusion_rows:
|
||||
# get diffusion row
|
||||
diffusion_row = list()
|
||||
|
|
|
@ -10,6 +10,8 @@ def printit(p):
|
|||
sd = torch.load(p, map_location="cpu")
|
||||
if "global_step" in sd:
|
||||
print(f"This is global step {sd['global_step']}.")
|
||||
if "model_ema.num_updates" in sd["state_dict"]:
|
||||
print(f"And we got {sd['state_dict']['model_ema.num_updates']} EMA updates.")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
41
scripts/slurm/v1_edgeinpainting/launcher.sh
Executable file
41
scripts/slurm/v1_edgeinpainting/launcher.sh
Executable file
|
@ -0,0 +1,41 @@
|
|||
#!/bin/bash
|
||||
|
||||
# mpi version for node rank
|
||||
H=`hostname`
|
||||
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
|
||||
export NODE_RANK=${THEID}
|
||||
echo THEID=$THEID
|
||||
|
||||
echo "##########################################"
|
||||
echo MASTER_ADDR=${MASTER_ADDR}
|
||||
echo MASTER_PORT=${MASTER_PORT}
|
||||
echo NODE_RANK=${NODE_RANK}
|
||||
echo WORLD_SIZE=${WORLD_SIZE}
|
||||
echo "##########################################"
|
||||
# debug environment worked great so we stick with it
|
||||
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
|
||||
# env with pip dependencies from stable diffusion's requirements.txt
|
||||
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
|
||||
#conda activate stable
|
||||
# torch 1.11 to avoid bug in ckpt restoring
|
||||
conda activate torch111
|
||||
cd /fsx/stable-diffusion/stable-diffusion
|
||||
|
||||
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/inpainting/v1-edgeinpainting.yaml"
|
||||
|
||||
# resume and set new seed to reshuffle data
|
||||
#EXTRA="--seed 543 --resume_from_checkpoint ..."
|
||||
|
||||
# reduce lr a bit
|
||||
#EXTRA="${EXTRA} model.params.scheduler_config.params.f_max=[0.75]"
|
||||
|
||||
# custom logdir
|
||||
#EXTRA="${EXTRA} --logdir rlogs"
|
||||
|
||||
# debugging
|
||||
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
|
||||
|
||||
# detect bad gpus early on
|
||||
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
|
||||
|
||||
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False
|
42
scripts/slurm/v1_edgeinpainting/sbatch.sh
Executable file
42
scripts/slurm/v1_edgeinpainting/sbatch.sh
Executable file
|
@ -0,0 +1,42 @@
|
|||
#!/bin/bash
|
||||
#SBATCH --partition=compute-od-gpu
|
||||
#SBATCH --job-name=stable-diffusion-v1-edgeinpainting
|
||||
#SBATCH --nodes 24
|
||||
#SBATCH --ntasks-per-node 1
|
||||
#SBATCH --cpus-per-gpu=4
|
||||
#SBATCH --gres=gpu:8
|
||||
#SBATCH --exclusive
|
||||
#SBATCH --output=%x_%j.out
|
||||
#SBATCH --comment "Key=Monitoring,Value=ON"
|
||||
#SBATCH --no-requeue
|
||||
|
||||
module load intelmpi
|
||||
source /opt/intel/mpi/latest/env/vars.sh
|
||||
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
|
||||
export NCCL_PROTO=simple
|
||||
export PATH=/opt/amazon/efa/bin:$PATH
|
||||
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
|
||||
export FI_EFA_FORK_SAFE=1
|
||||
export FI_LOG_LEVEL=1
|
||||
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
|
||||
export NCCL_DEBUG=info
|
||||
export PYTHONFAULTHANDLER=1
|
||||
export CUDA_LAUNCH_BLOCKING=0
|
||||
export OMPI_MCA_mtl_base_verbose=1
|
||||
export FI_EFA_ENABLE_SHM_TRANSFER=0
|
||||
export FI_PROVIDER=efa
|
||||
export FI_EFA_TX_MIN_CREDITS=64
|
||||
export NCCL_TREE_THRESHOLD=0
|
||||
|
||||
# sent to sub script
|
||||
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
|
||||
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||
export MASTER_PORT=12802
|
||||
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
|
||||
export WORLD_SIZE=$COUNT_NODE
|
||||
|
||||
echo go $COUNT_NODE
|
||||
echo $HOSTNAMES
|
||||
echo $WORLD_SIZE
|
||||
|
||||
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v1_edgeinpainting/launcher.sh
|
|
@ -27,7 +27,8 @@ CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_impro
|
|||
#EXTRA="--seed 718 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T07-45-07_v1_improvedaesthetics/checkpoints/last.ckpt"
|
||||
#EXTRA="--seed 719 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T12-32-32_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
|
||||
#EXTRA="--seed 720 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-23T07-52-21_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
|
||||
EXTRA="--seed 721 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-24T19-07-33_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
|
||||
#EXTRA="--seed 721 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-24T19-07-33_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
|
||||
EXTRA="--seed 722 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-29T10-26-01_v1_improvedaestheticsv1_iahr_torch111_ucg/checkpoints/last.ckpt"
|
||||
|
||||
# only images >= 512 and pwatermark <= 0.4999
|
||||
EXTRA="${EXTRA} data.params.min_size=512 data.params.max_pwatermark=0.4999"
|
||||
|
@ -35,6 +36,9 @@ EXTRA="${EXTRA} data.params.min_size=512 data.params.max_pwatermark=0.4999"
|
|||
# unconditional guidance training
|
||||
EXTRA="${EXTRA} model.params.ucg_training.txt.p=0.1 model.params.ucg_training.txt.val=''"
|
||||
|
||||
# reduce lr a bit
|
||||
EXTRA="${EXTRA} model.params.scheduler_config.params.f_max=[0.5]"
|
||||
|
||||
# postfix
|
||||
EXTRA="${EXTRA} -f v1_iahr_torch111_ucg"
|
||||
|
||||
|
|
42
scripts/slurm/v2_pretraining/launcher.sh
Executable file
42
scripts/slurm/v2_pretraining/launcher.sh
Executable file
|
@ -0,0 +1,42 @@
|
|||
#!/bin/bash
|
||||
|
||||
# mpi version for node rank
|
||||
H=`hostname`
|
||||
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
|
||||
export NODE_RANK=${THEID}
|
||||
echo THEID=$THEID
|
||||
|
||||
echo "##########################################"
|
||||
echo MASTER_ADDR=${MASTER_ADDR}
|
||||
echo MASTER_PORT=${MASTER_PORT}
|
||||
echo NODE_RANK=${NODE_RANK}
|
||||
echo WORLD_SIZE=${WORLD_SIZE}
|
||||
echo "##########################################"
|
||||
# debug environment worked great so we stick with it
|
||||
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
|
||||
# env with pip dependencies from stable diffusion's requirements.txt
|
||||
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
|
||||
#conda activate stable
|
||||
# torch 1.11 to avoid bug in ckpt restoring
|
||||
conda activate torch111
|
||||
cd /fsx/stable-diffusion/stable-diffusion
|
||||
|
||||
CONFIG=configs/stable-diffusion/v2_pretraining.yaml
|
||||
|
||||
# resume and set new seed to reshuffle data
|
||||
#EXTRA="--seed 542 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints/v2-256/216k-256.ckpt"
|
||||
EXTRA="--seed 543 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-31T23-35-31_v2_pretraining/checkpoints/last.ckpt"
|
||||
|
||||
# reduce lr a bit
|
||||
#EXTRA="${EXTRA} model.params.scheduler_config.params.f_max=[0.75]"
|
||||
|
||||
# custom logdir
|
||||
#EXTRA="${EXTRA} --logdir rlogs"
|
||||
|
||||
# debugging
|
||||
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
|
||||
|
||||
# detect bad gpus early on
|
||||
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
|
||||
|
||||
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA
|
42
scripts/slurm/v2_pretraining/sbatch.sh
Executable file
42
scripts/slurm/v2_pretraining/sbatch.sh
Executable file
|
@ -0,0 +1,42 @@
|
|||
#!/bin/bash
|
||||
#SBATCH --partition=compute-od-gpu
|
||||
#SBATCH --job-name=stable-diffusion-v2-pretraining
|
||||
#SBATCH --nodes 32
|
||||
#SBATCH --ntasks-per-node 1
|
||||
#SBATCH --cpus-per-gpu=4
|
||||
#SBATCH --gres=gpu:8
|
||||
#SBATCH --exclusive
|
||||
#SBATCH --output=%x_%j.out
|
||||
#SBATCH --comment "Key=Monitoring,Value=ON"
|
||||
#SBATCH --no-requeue
|
||||
|
||||
module load intelmpi
|
||||
source /opt/intel/mpi/latest/env/vars.sh
|
||||
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
|
||||
export NCCL_PROTO=simple
|
||||
export PATH=/opt/amazon/efa/bin:$PATH
|
||||
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
|
||||
export FI_EFA_FORK_SAFE=1
|
||||
export FI_LOG_LEVEL=1
|
||||
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
|
||||
export NCCL_DEBUG=info
|
||||
export PYTHONFAULTHANDLER=1
|
||||
export CUDA_LAUNCH_BLOCKING=0
|
||||
export OMPI_MCA_mtl_base_verbose=1
|
||||
export FI_EFA_ENABLE_SHM_TRANSFER=0
|
||||
export FI_PROVIDER=efa
|
||||
export FI_EFA_TX_MIN_CREDITS=64
|
||||
export NCCL_TREE_THRESHOLD=0
|
||||
|
||||
# sent to sub script
|
||||
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
|
||||
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||
export MASTER_PORT=12802
|
||||
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
|
||||
export WORLD_SIZE=$COUNT_NODE
|
||||
|
||||
echo go $COUNT_NODE
|
||||
echo $HOSTNAMES
|
||||
echo $WORLD_SIZE
|
||||
|
||||
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v2_pretraining/launcher.sh
|
Loading…
Reference in a new issue