Merge remote-tracking branch 'origin/main'
This commit is contained in:
commit
95dfb95672
8 changed files with 562 additions and 2 deletions
|
@ -0,0 +1,144 @@
|
||||||
|
model:
|
||||||
|
base_learning_rate: 7.5e-05
|
||||||
|
target: ldm.models.diffusion.ddpm.LatentInpaintDiffusion
|
||||||
|
params:
|
||||||
|
linear_start: 0.00085
|
||||||
|
linear_end: 0.0120
|
||||||
|
num_timesteps_cond: 1
|
||||||
|
log_every_t: 200
|
||||||
|
timesteps: 1000
|
||||||
|
first_stage_key: "jpg"
|
||||||
|
cond_stage_key: "txt"
|
||||||
|
image_size: 64
|
||||||
|
channels: 4
|
||||||
|
cond_stage_trainable: false # Note: different from the one we trained before
|
||||||
|
conditioning_key: hybrid # important
|
||||||
|
monitor: val/loss_simple_ema
|
||||||
|
scale_factor: 0.18215
|
||||||
|
ckpt_path: "/fsx/stable-diffusion/stable-diffusion/checkpoints2/v1pp/v1pp-flatline-pruned.ckpt"
|
||||||
|
|
||||||
|
scheduler_config: # 10000 warmup steps
|
||||||
|
target: ldm.lr_scheduler.LambdaLinearScheduler
|
||||||
|
params:
|
||||||
|
warm_up_steps: [ 2500 ] # NOTE for resuming. use 10000 if starting from scratch
|
||||||
|
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
|
||||||
|
f_start: [ 1.e-6 ]
|
||||||
|
f_max: [ 1. ]
|
||||||
|
f_min: [ 1. ]
|
||||||
|
|
||||||
|
unet_config:
|
||||||
|
target: ldm.modules.diffusionmodules.openaimodel.UNetModel
|
||||||
|
params:
|
||||||
|
image_size: 32 # unused
|
||||||
|
in_channels: 9 # 4 data + 4 downscaled image + 1 mask
|
||||||
|
out_channels: 4
|
||||||
|
model_channels: 320
|
||||||
|
attention_resolutions: [ 4, 2, 1 ]
|
||||||
|
num_res_blocks: 2
|
||||||
|
channel_mult: [ 1, 2, 4, 4 ]
|
||||||
|
num_heads: 8
|
||||||
|
use_spatial_transformer: True
|
||||||
|
transformer_depth: 1
|
||||||
|
context_dim: 768
|
||||||
|
use_checkpoint: True
|
||||||
|
legacy: False
|
||||||
|
|
||||||
|
first_stage_config:
|
||||||
|
target: ldm.models.autoencoder.AutoencoderKL
|
||||||
|
params:
|
||||||
|
embed_dim: 4
|
||||||
|
monitor: val/rec_loss
|
||||||
|
ddconfig:
|
||||||
|
double_z: true
|
||||||
|
z_channels: 4
|
||||||
|
resolution: 256
|
||||||
|
in_channels: 3
|
||||||
|
out_ch: 3
|
||||||
|
ch: 128
|
||||||
|
ch_mult:
|
||||||
|
- 1
|
||||||
|
- 2
|
||||||
|
- 4
|
||||||
|
- 4
|
||||||
|
num_res_blocks: 2
|
||||||
|
attn_resolutions: []
|
||||||
|
dropout: 0.0
|
||||||
|
lossconfig:
|
||||||
|
target: torch.nn.Identity
|
||||||
|
|
||||||
|
cond_stage_config:
|
||||||
|
target: ldm.modules.encoders.modules.FrozenCLIPEmbedder
|
||||||
|
|
||||||
|
|
||||||
|
data:
|
||||||
|
target: ldm.data.laion.WebDataModuleFromConfig
|
||||||
|
params:
|
||||||
|
tar_base: "pipe:aws s3 cp s3://s-datasets/laion-high-resolution/"
|
||||||
|
batch_size: 4
|
||||||
|
num_workers: 4
|
||||||
|
multinode: True
|
||||||
|
min_size: 512
|
||||||
|
train:
|
||||||
|
shards: '{00000..17279}.tar -'
|
||||||
|
shuffle: 10000
|
||||||
|
image_key: jpg
|
||||||
|
image_transforms:
|
||||||
|
- target: torchvision.transforms.Resize
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
interpolation: 3
|
||||||
|
- target: torchvision.transforms.RandomCrop
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
postprocess:
|
||||||
|
target: ldm.data.laion.AddMask
|
||||||
|
|
||||||
|
# NOTE use enough shards to avoid empty validation loops in workers
|
||||||
|
validation:
|
||||||
|
shards: '{17280..17535}.tar -'
|
||||||
|
shuffle: 0
|
||||||
|
image_key: jpg
|
||||||
|
image_transforms:
|
||||||
|
- target: torchvision.transforms.Resize
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
interpolation: 3
|
||||||
|
- target: torchvision.transforms.CenterCrop
|
||||||
|
params:
|
||||||
|
size: 512
|
||||||
|
postprocess:
|
||||||
|
target: ldm.data.laion.AddMask
|
||||||
|
|
||||||
|
|
||||||
|
lightning:
|
||||||
|
find_unused_parameters: False
|
||||||
|
|
||||||
|
modelcheckpoint:
|
||||||
|
params:
|
||||||
|
every_n_train_steps: 2000
|
||||||
|
|
||||||
|
callbacks:
|
||||||
|
image_logger:
|
||||||
|
target: main.ImageLogger
|
||||||
|
params:
|
||||||
|
disabled: False
|
||||||
|
batch_frequency: 1000
|
||||||
|
max_images: 4
|
||||||
|
increase_log_steps: False
|
||||||
|
log_first_step: False
|
||||||
|
log_images_kwargs:
|
||||||
|
use_ema_scope: False
|
||||||
|
inpaint: False
|
||||||
|
plot_progressive_rows: False
|
||||||
|
plot_diffusion_rows: False
|
||||||
|
N: 4
|
||||||
|
unconditional_guidance_scale: 3.0
|
||||||
|
unconditional_guidance_label: [""]
|
||||||
|
ddim_steps: 100 # todo check these out for inpainting,
|
||||||
|
ddim_eta: 1.0 # todo check these out for inpainting,
|
||||||
|
|
||||||
|
trainer:
|
||||||
|
benchmark: True
|
||||||
|
val_check_interval: 5000000 # really sorry
|
||||||
|
num_sanity_val_steps: 0
|
||||||
|
accumulate_grad_batches: 2
|
|
@ -1,3 +1,5 @@
|
||||||
|
import os
|
||||||
|
import numpy as np
|
||||||
from abc import abstractmethod
|
from abc import abstractmethod
|
||||||
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
|
from torch.utils.data import Dataset, ConcatDataset, ChainDataset, IterableDataset
|
||||||
|
|
||||||
|
@ -20,4 +22,19 @@ class Txt2ImgIterableBaseDataset(IterableDataset):
|
||||||
|
|
||||||
@abstractmethod
|
@abstractmethod
|
||||||
def __iter__(self):
|
def __iter__(self):
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class PRNGMixin(object):
|
||||||
|
"""
|
||||||
|
Adds a prng property which is a numpy RandomState which gets
|
||||||
|
reinitialized whenever the pid changes to avoid synchronized sampling
|
||||||
|
behavior when used in conjunction with multiprocessing.
|
||||||
|
"""
|
||||||
|
@property
|
||||||
|
def prng(self):
|
||||||
|
currentpid = os.getpid()
|
||||||
|
if getattr(self, "_initpid", None) != currentpid:
|
||||||
|
self._initpid = currentpid
|
||||||
|
self._prng = np.random.RandomState()
|
||||||
|
return self._prng
|
||||||
|
|
0
ldm/data/inpainting/__init__.py
Normal file
0
ldm/data/inpainting/__init__.py
Normal file
150
ldm/data/inpainting/synthetic_mask.py
Normal file
150
ldm/data/inpainting/synthetic_mask.py
Normal file
|
@ -0,0 +1,150 @@
|
||||||
|
from PIL import Image, ImageDraw
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
settings = {
|
||||||
|
"256narrow": {
|
||||||
|
"p_irr": 1,
|
||||||
|
"min_n_irr": 4,
|
||||||
|
"max_n_irr": 50,
|
||||||
|
"max_l_irr": 40,
|
||||||
|
"max_w_irr": 10,
|
||||||
|
"min_n_box": None,
|
||||||
|
"max_n_box": None,
|
||||||
|
"min_s_box": None,
|
||||||
|
"max_s_box": None,
|
||||||
|
"marg": None,
|
||||||
|
},
|
||||||
|
"256train": {
|
||||||
|
"p_irr": 0.5,
|
||||||
|
"min_n_irr": 1,
|
||||||
|
"max_n_irr": 5,
|
||||||
|
"max_l_irr": 200,
|
||||||
|
"max_w_irr": 100,
|
||||||
|
"min_n_box": 1,
|
||||||
|
"max_n_box": 4,
|
||||||
|
"min_s_box": 30,
|
||||||
|
"max_s_box": 150,
|
||||||
|
"marg": 10,
|
||||||
|
},
|
||||||
|
"512train": { # TODO: experimental
|
||||||
|
"p_irr": 0.5,
|
||||||
|
"min_n_irr": 1,
|
||||||
|
"max_n_irr": 5,
|
||||||
|
"max_l_irr": 450,
|
||||||
|
"max_w_irr": 250,
|
||||||
|
"min_n_box": 1,
|
||||||
|
"max_n_box": 4,
|
||||||
|
"min_s_box": 30,
|
||||||
|
"max_s_box": 300,
|
||||||
|
"marg": 10,
|
||||||
|
},
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
def gen_segment_mask(mask, start, end, brush_width):
|
||||||
|
mask = mask > 0
|
||||||
|
mask = (255 * mask).astype(np.uint8)
|
||||||
|
mask = Image.fromarray(mask)
|
||||||
|
draw = ImageDraw.Draw(mask)
|
||||||
|
draw.line([start, end], fill=255, width=brush_width, joint="curve")
|
||||||
|
mask = np.array(mask) / 255
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
def gen_box_mask(mask, masked):
|
||||||
|
x_0, y_0, w, h = masked
|
||||||
|
mask[y_0:y_0 + h, x_0:x_0 + w] = 1
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
def gen_round_mask(mask, masked, radius):
|
||||||
|
x_0, y_0, w, h = masked
|
||||||
|
xy = [(x_0, y_0), (x_0 + w, y_0 + w)]
|
||||||
|
|
||||||
|
mask = mask > 0
|
||||||
|
mask = (255 * mask).astype(np.uint8)
|
||||||
|
mask = Image.fromarray(mask)
|
||||||
|
draw = ImageDraw.Draw(mask)
|
||||||
|
draw.rounded_rectangle(xy, radius=radius, fill=255)
|
||||||
|
mask = np.array(mask) / 255
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
def gen_large_mask(prng, img_h, img_w,
|
||||||
|
marg, p_irr, min_n_irr, max_n_irr, max_l_irr, max_w_irr,
|
||||||
|
min_n_box, max_n_box, min_s_box, max_s_box):
|
||||||
|
"""
|
||||||
|
img_h: int, an image height
|
||||||
|
img_w: int, an image width
|
||||||
|
marg: int, a margin for a box starting coordinate
|
||||||
|
p_irr: float, 0 <= p_irr <= 1, a probability of a polygonal chain mask
|
||||||
|
|
||||||
|
min_n_irr: int, min number of segments
|
||||||
|
max_n_irr: int, max number of segments
|
||||||
|
max_l_irr: max length of a segment in polygonal chain
|
||||||
|
max_w_irr: max width of a segment in polygonal chain
|
||||||
|
|
||||||
|
min_n_box: int, min bound for the number of box primitives
|
||||||
|
max_n_box: int, max bound for the number of box primitives
|
||||||
|
min_s_box: int, min length of a box side
|
||||||
|
max_s_box: int, max length of a box side
|
||||||
|
"""
|
||||||
|
|
||||||
|
mask = np.zeros((img_h, img_w))
|
||||||
|
uniform = prng.randint
|
||||||
|
|
||||||
|
if np.random.uniform(0, 1) < p_irr: # generate polygonal chain
|
||||||
|
n = uniform(min_n_irr, max_n_irr) # sample number of segments
|
||||||
|
|
||||||
|
for _ in range(n):
|
||||||
|
y = uniform(0, img_h) # sample a starting point
|
||||||
|
x = uniform(0, img_w)
|
||||||
|
|
||||||
|
a = uniform(0, 360) # sample angle
|
||||||
|
l = uniform(10, max_l_irr) # sample segment length
|
||||||
|
w = uniform(5, max_w_irr) # sample a segment width
|
||||||
|
|
||||||
|
# draw segment starting from (x,y) to (x_,y_) using brush of width w
|
||||||
|
x_ = x + l * np.sin(a)
|
||||||
|
y_ = y + l * np.cos(a)
|
||||||
|
|
||||||
|
mask = gen_segment_mask(mask, start=(x, y), end=(x_, y_), brush_width=w)
|
||||||
|
x, y = x_, y_
|
||||||
|
else: # generate Box masks
|
||||||
|
n = uniform(min_n_box, max_n_box) # sample number of rectangles
|
||||||
|
|
||||||
|
for _ in range(n):
|
||||||
|
h = uniform(min_s_box, max_s_box) # sample box shape
|
||||||
|
w = uniform(min_s_box, max_s_box)
|
||||||
|
|
||||||
|
x_0 = uniform(marg, img_w - marg - w) # sample upper-left coordinates of box
|
||||||
|
y_0 = uniform(marg, img_h - marg - h)
|
||||||
|
|
||||||
|
if np.random.uniform(0, 1) < 0.5:
|
||||||
|
mask = gen_box_mask(mask, masked=(x_0, y_0, w, h))
|
||||||
|
else:
|
||||||
|
r = uniform(0, 60) # sample radius
|
||||||
|
mask = gen_round_mask(mask, masked=(x_0, y_0, w, h), radius=r)
|
||||||
|
return mask
|
||||||
|
|
||||||
|
|
||||||
|
make_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w,
|
||||||
|
**settings["256train"])
|
||||||
|
|
||||||
|
make_narrow_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w,
|
||||||
|
**settings["256narrow"])
|
||||||
|
|
||||||
|
make_512_lama_mask = lambda prng, h, w: gen_large_mask(prng, h, w,
|
||||||
|
**settings["512train"])
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
import sys
|
||||||
|
|
||||||
|
out = sys.argv[1]
|
||||||
|
|
||||||
|
prng = np.random.RandomState(1)
|
||||||
|
kwargs = settings["256train"]
|
||||||
|
mask = gen_large_mask(prng, 256, 256, **kwargs)
|
||||||
|
mask = (255 * mask).astype(np.uint8)
|
||||||
|
mask = Image.fromarray(mask)
|
||||||
|
mask.save(out)
|
|
@ -16,6 +16,8 @@ from webdataset.handlers import warn_and_continue
|
||||||
|
|
||||||
|
|
||||||
from ldm.util import instantiate_from_config
|
from ldm.util import instantiate_from_config
|
||||||
|
from ldm.data.inpainting.synthetic_mask import gen_large_mask, make_lama_mask, make_narrow_lama_mask, make_512_lama_mask
|
||||||
|
from ldm.data.base import PRNGMixin
|
||||||
|
|
||||||
|
|
||||||
class DataWithWings(torch.utils.data.IterableDataset):
|
class DataWithWings(torch.utils.data.IterableDataset):
|
||||||
|
@ -229,6 +231,23 @@ class AddLR(object):
|
||||||
return sample
|
return sample
|
||||||
|
|
||||||
|
|
||||||
|
class AddMask(PRNGMixin):
|
||||||
|
def __init__(self, size=512):
|
||||||
|
super().__init__()
|
||||||
|
self.make_mask = make_512_lama_mask if size == 512 else make_lama_mask
|
||||||
|
|
||||||
|
def __call__(self, sample):
|
||||||
|
# sample['jpg'] is tensor hwc in [-1, 1] at this point
|
||||||
|
x = sample['jpg']
|
||||||
|
mask = self.make_mask(self.prng, x.shape[0], x.shape[1])
|
||||||
|
mask[mask < 0.5] = 0
|
||||||
|
mask[mask > 0.5] = 1
|
||||||
|
mask = torch.from_numpy(mask[..., None])
|
||||||
|
sample['mask'] = mask
|
||||||
|
sample['masked_image'] = x * (mask < 0.5)
|
||||||
|
return sample
|
||||||
|
|
||||||
|
|
||||||
def example00():
|
def example00():
|
||||||
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
url = "pipe:aws s3 cp s3://s-datasets/laion5b/laion2B-data/000000.tar -"
|
||||||
dataset = wds.WebDataset(url)
|
dataset = wds.WebDataset(url)
|
||||||
|
|
|
@ -1260,7 +1260,6 @@ class LatentDiffusion(DDPM):
|
||||||
use_ema_scope=True,
|
use_ema_scope=True,
|
||||||
**kwargs):
|
**kwargs):
|
||||||
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
||||||
|
|
||||||
use_ddim = ddim_steps is not None
|
use_ddim = ddim_steps is not None
|
||||||
|
|
||||||
log = dict()
|
log = dict()
|
||||||
|
@ -1582,6 +1581,168 @@ class LatentUpscaleDiffusion(LatentDiffusion):
|
||||||
return log
|
return log
|
||||||
|
|
||||||
|
|
||||||
|
class LatentInpaintDiffusion(LatentDiffusion):
|
||||||
|
"""
|
||||||
|
can either run as pure inpainting model (only concat mode) or with mixed conditionings,
|
||||||
|
e.g. mask as concat and text via cross-attn.
|
||||||
|
To disable finetuning mode, set finetune_keys to None
|
||||||
|
"""
|
||||||
|
def __init__(self,
|
||||||
|
finetune_keys=("model.diffusion_model.input_blocks.0.0.weight", "model_ema.diffusion_modelinput_blocks00weight"),
|
||||||
|
concat_keys=("mask", "masked_image"),
|
||||||
|
masked_image_key="masked_image",
|
||||||
|
keep_finetune_dims=4, # if model was trained without concat mode before and we would like to keep these channels
|
||||||
|
*args, **kwargs
|
||||||
|
):
|
||||||
|
ckpt_path = kwargs.pop("ckpt_path", None)
|
||||||
|
ignore_keys = kwargs.pop("ignore_keys", list())
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
self.masked_image_key = masked_image_key
|
||||||
|
assert self.masked_image_key in concat_keys
|
||||||
|
self.finetune_keys = finetune_keys
|
||||||
|
self.concat_keys = concat_keys
|
||||||
|
self.keep_dims = keep_finetune_dims
|
||||||
|
if exists(self.finetune_keys): assert exists(ckpt_path), 'can only finetune from a given checkpoint'
|
||||||
|
if exists(ckpt_path):
|
||||||
|
self.init_from_ckpt(ckpt_path, ignore_keys)
|
||||||
|
|
||||||
|
def init_from_ckpt(self, path, ignore_keys=list(), only_model=False):
|
||||||
|
sd = torch.load(path, map_location="cpu")
|
||||||
|
if "state_dict" in list(sd.keys()):
|
||||||
|
sd = sd["state_dict"]
|
||||||
|
keys = list(sd.keys())
|
||||||
|
for k in keys:
|
||||||
|
for ik in ignore_keys:
|
||||||
|
if k.startswith(ik):
|
||||||
|
print("Deleting key {} from state_dict.".format(k))
|
||||||
|
del sd[k]
|
||||||
|
|
||||||
|
# make it explicit, finetune by including extra input channels
|
||||||
|
if exists(self.finetune_keys) and k in self.finetune_keys:
|
||||||
|
new_entry = None
|
||||||
|
for name, param in self.named_parameters():
|
||||||
|
if name in self.finetune_keys:
|
||||||
|
print(f"modifying key '{name}' and keeping its original {self.keep_dims} (channels) dimensions only")
|
||||||
|
new_entry = torch.zeros_like(param) # zero init
|
||||||
|
assert exists(new_entry), 'did not find matching parameter to modify'
|
||||||
|
new_entry[:, :self.keep_dims, ...] = sd[k]
|
||||||
|
sd[k] = new_entry
|
||||||
|
|
||||||
|
missing, unexpected = self.load_state_dict(sd, strict=False) if not only_model else self.model.load_state_dict(
|
||||||
|
sd, strict=False)
|
||||||
|
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
|
||||||
|
if len(missing) > 0:
|
||||||
|
print(f"Missing Keys: {missing}")
|
||||||
|
if len(unexpected) > 0:
|
||||||
|
print(f"Unexpected Keys: {unexpected}")
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def get_input(self, batch, k, cond_key=None, bs=None, return_first_stage_outputs=False):
|
||||||
|
# note: restricted to non-trainable encoders currently
|
||||||
|
assert not self.cond_stage_trainable, 'trainable cond stages not yet supported for inpaiting'
|
||||||
|
z, c, x, xrec, xc = super().get_input(batch, self.first_stage_key, return_first_stage_outputs=True,
|
||||||
|
force_c_encode=True, return_original_cond=True, bs=bs)
|
||||||
|
|
||||||
|
assert exists(self.concat_keys)
|
||||||
|
c_cat = list()
|
||||||
|
for ck in self.concat_keys:
|
||||||
|
cc = rearrange(batch[ck], 'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
||||||
|
if bs is not None:
|
||||||
|
cc = cc[:bs]
|
||||||
|
cc = cc.to(self.device)
|
||||||
|
bchw = z.shape
|
||||||
|
if ck != self.masked_image_key:
|
||||||
|
cc = torch.nn.functional.interpolate(cc, size=bchw[-2:])
|
||||||
|
else:
|
||||||
|
cc = self.get_first_stage_encoding(self.encode_first_stage(cc))
|
||||||
|
c_cat.append(cc)
|
||||||
|
c_cat = torch.cat(c_cat, dim=1)
|
||||||
|
all_conds = {"c_concat": [c_cat], "c_crossattn": [c]}
|
||||||
|
if return_first_stage_outputs:
|
||||||
|
return z, all_conds, x, xrec, xc
|
||||||
|
return z, all_conds
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def log_images(self, batch, N=8, n_row=4, sample=True, ddim_steps=200, ddim_eta=1., return_keys=None,
|
||||||
|
quantize_denoised=True, inpaint=True, plot_denoise_rows=False, plot_progressive_rows=True,
|
||||||
|
plot_diffusion_rows=True, unconditional_guidance_scale=1., unconditional_guidance_label=None,
|
||||||
|
use_ema_scope=True,
|
||||||
|
**kwargs):
|
||||||
|
ema_scope = self.ema_scope if use_ema_scope else nullcontext
|
||||||
|
use_ddim = ddim_steps is not None
|
||||||
|
|
||||||
|
log = dict()
|
||||||
|
z, c, x, xrec, xc = self.get_input(batch, self.first_stage_key, bs=N, return_first_stage_outputs=True)
|
||||||
|
c_cat, c = c["c_concat"][0], c["c_crossattn"][0]
|
||||||
|
N = min(x.shape[0], N)
|
||||||
|
n_row = min(x.shape[0], n_row)
|
||||||
|
log["inputs"] = x
|
||||||
|
log["reconstruction"] = xrec
|
||||||
|
if self.model.conditioning_key is not None:
|
||||||
|
if hasattr(self.cond_stage_model, "decode"):
|
||||||
|
xc = self.cond_stage_model.decode(c)
|
||||||
|
log["conditioning"] = xc
|
||||||
|
elif self.cond_stage_key in ["caption", "txt"]:
|
||||||
|
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch[self.cond_stage_key], size=x.shape[2] // 25)
|
||||||
|
log["conditioning"] = xc
|
||||||
|
elif self.cond_stage_key == 'class_label':
|
||||||
|
xc = log_txt_as_img((x.shape[2], x.shape[3]), batch["human_label"], size=x.shape[2] // 25)
|
||||||
|
log['conditioning'] = xc
|
||||||
|
elif isimage(xc):
|
||||||
|
log["conditioning"] = xc
|
||||||
|
if ismap(xc):
|
||||||
|
log["original_conditioning"] = self.to_rgb(xc)
|
||||||
|
|
||||||
|
if plot_diffusion_rows:
|
||||||
|
# get diffusion row
|
||||||
|
diffusion_row = list()
|
||||||
|
z_start = z[:n_row]
|
||||||
|
for t in range(self.num_timesteps):
|
||||||
|
if t % self.log_every_t == 0 or t == self.num_timesteps - 1:
|
||||||
|
t = repeat(torch.tensor([t]), '1 -> b', b=n_row)
|
||||||
|
t = t.to(self.device).long()
|
||||||
|
noise = torch.randn_like(z_start)
|
||||||
|
z_noisy = self.q_sample(x_start=z_start, t=t, noise=noise)
|
||||||
|
diffusion_row.append(self.decode_first_stage(z_noisy))
|
||||||
|
|
||||||
|
diffusion_row = torch.stack(diffusion_row) # n_log_step, n_row, C, H, W
|
||||||
|
diffusion_grid = rearrange(diffusion_row, 'n b c h w -> b n c h w')
|
||||||
|
diffusion_grid = rearrange(diffusion_grid, 'b n c h w -> (b n) c h w')
|
||||||
|
diffusion_grid = make_grid(diffusion_grid, nrow=diffusion_row.shape[0])
|
||||||
|
log["diffusion_row"] = diffusion_grid
|
||||||
|
|
||||||
|
if sample:
|
||||||
|
# get denoise row
|
||||||
|
with ema_scope("Sampling"):
|
||||||
|
samples, z_denoise_row = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
||||||
|
batch_size=N, ddim=use_ddim,
|
||||||
|
ddim_steps=ddim_steps, eta=ddim_eta)
|
||||||
|
# samples, z_denoise_row = self.sample(cond=c, batch_size=N, return_intermediates=True)
|
||||||
|
x_samples = self.decode_first_stage(samples)
|
||||||
|
log["samples"] = x_samples
|
||||||
|
if plot_denoise_rows:
|
||||||
|
denoise_grid = self._get_denoise_row_from_list(z_denoise_row)
|
||||||
|
log["denoise_row"] = denoise_grid
|
||||||
|
|
||||||
|
if unconditional_guidance_scale > 1.0:
|
||||||
|
uc_cross = self.get_unconditional_conditioning(N, unconditional_guidance_label)
|
||||||
|
uc_cat = c_cat
|
||||||
|
uc_full = {"c_concat": [uc_cat], "c_crossattn": [uc_cross]}
|
||||||
|
with ema_scope("Sampling with classifier-free guidance"):
|
||||||
|
samples_cfg, _ = self.sample_log(cond={"c_concat": [c_cat], "c_crossattn": [c]},
|
||||||
|
batch_size=N, ddim=use_ddim,
|
||||||
|
ddim_steps=ddim_steps, eta=ddim_eta,
|
||||||
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
||||||
|
unconditional_conditioning=uc_full,
|
||||||
|
)
|
||||||
|
x_samples_cfg = self.decode_first_stage(samples_cfg)
|
||||||
|
log[f"samples_cfg_scale_{unconditional_guidance_scale:.2f}"] = x_samples_cfg
|
||||||
|
|
||||||
|
log["masked_image"] = rearrange(batch["masked_image"],
|
||||||
|
'b h w c -> b c h w').to(memory_format=torch.contiguous_format).float()
|
||||||
|
return log
|
||||||
|
|
||||||
|
|
||||||
class Layout2ImgDiffusion(LatentDiffusion):
|
class Layout2ImgDiffusion(LatentDiffusion):
|
||||||
# TODO: move all layout-specific hacks to this class
|
# TODO: move all layout-specific hacks to this class
|
||||||
def __init__(self, cond_stage_key, *args, **kwargs):
|
def __init__(self, cond_stage_key, *args, **kwargs):
|
||||||
|
|
27
scripts/slurm/v1_inpainting_improvedaesthetics_torch111/launcher.sh
Executable file
27
scripts/slurm/v1_inpainting_improvedaesthetics_torch111/launcher.sh
Executable file
|
@ -0,0 +1,27 @@
|
||||||
|
#!/bin/bash
|
||||||
|
|
||||||
|
# mpi version for node rank
|
||||||
|
H=`hostname`
|
||||||
|
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
|
||||||
|
export NODE_RANK=${THEID}
|
||||||
|
echo THEID=$THEID
|
||||||
|
|
||||||
|
echo "##########################################"
|
||||||
|
echo MASTER_ADDR=${MASTER_ADDR}
|
||||||
|
echo MASTER_PORT=${MASTER_PORT}
|
||||||
|
echo NODE_RANK=${NODE_RANK}
|
||||||
|
echo WORLD_SIZE=${WORLD_SIZE}
|
||||||
|
echo "##########################################"
|
||||||
|
# debug environment worked great so we stick with it
|
||||||
|
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
|
||||||
|
# env with pip dependencies from stable diffusion's requirements.txt
|
||||||
|
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
|
||||||
|
conda activate torch111
|
||||||
|
cd /fsx/robin/stable-diffusion/stable-diffusion
|
||||||
|
|
||||||
|
CONFIG="/fsx/robin/stable-diffusion/stable-diffusion/configs/stable-diffusion/inpainting/v1-finetune-for-inpainting-laion-iaesthe.yaml"
|
||||||
|
|
||||||
|
# debugging
|
||||||
|
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
|
||||||
|
|
||||||
|
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False #$EXTRA
|
42
scripts/slurm/v1_inpainting_improvedaesthetics_torch111/sbatch.sh
Executable file
42
scripts/slurm/v1_inpainting_improvedaesthetics_torch111/sbatch.sh
Executable file
|
@ -0,0 +1,42 @@
|
||||||
|
#!/bin/bash
|
||||||
|
#SBATCH --partition=compute-od-gpu
|
||||||
|
#SBATCH --job-name=stable-diffusion-v1-inpainting-improvedaesthetics-torch111
|
||||||
|
#SBATCH --nodes 8
|
||||||
|
#SBATCH --ntasks-per-node 1
|
||||||
|
#SBATCH --cpus-per-gpu=4
|
||||||
|
#SBATCH --gres=gpu:8
|
||||||
|
#SBATCH --exclusive
|
||||||
|
#SBATCH --output=%x_%j.out
|
||||||
|
#SBATCH --comment "Key=Monitoring,Value=ON"
|
||||||
|
|
||||||
|
module load intelmpi
|
||||||
|
source /opt/intel/mpi/latest/env/vars.sh
|
||||||
|
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
|
||||||
|
all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
|
||||||
|
export NCCL_PROTO=simple
|
||||||
|
export PATH=/opt/amazon/efa/bin:$PATH
|
||||||
|
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
|
||||||
|
export FI_EFA_FORK_SAFE=1
|
||||||
|
export FI_LOG_LEVEL=1
|
||||||
|
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
|
||||||
|
export NCCL_DEBUG=info
|
||||||
|
export PYTHONFAULTHANDLER=1
|
||||||
|
export CUDA_LAUNCH_BLOCKING=0
|
||||||
|
export OMPI_MCA_mtl_base_verbose=1
|
||||||
|
export FI_EFA_ENABLE_SHM_TRANSFER=0
|
||||||
|
export FI_PROVIDER=efa
|
||||||
|
export FI_EFA_TX_MIN_CREDITS=64
|
||||||
|
export NCCL_TREE_THRESHOLD=0
|
||||||
|
|
||||||
|
# sent to sub script
|
||||||
|
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
|
||||||
|
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||||
|
export MASTER_PORT=12802
|
||||||
|
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
|
||||||
|
export WORLD_SIZE=$COUNT_NODE
|
||||||
|
|
||||||
|
echo go $COUNT_NODE
|
||||||
|
echo $HOSTNAMES
|
||||||
|
echo $WORLD_SIZE
|
||||||
|
|
||||||
|
mpirun -n $COUNT_NODE -perhost 1 /fsx/robin/stable-diffusion/stable-diffusion/scripts/slurm/v1_inpainting_improvedaesthetics_torch111/launcher.sh
|
Loading…
Reference in a new issue