support unconditional guidance training
This commit is contained in:
parent
d762d5992a
commit
8ed76d2350
3 changed files with 110 additions and 0 deletions
|
@ -74,6 +74,7 @@ class DDPM(pl.LightningModule):
|
|||
learn_logvar=False,
|
||||
logvar_init=0.,
|
||||
make_it_fit=False,
|
||||
ucg_training=None,
|
||||
):
|
||||
super().__init__()
|
||||
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
|
||||
|
@ -117,6 +118,10 @@ class DDPM(pl.LightningModule):
|
|||
if self.learn_logvar:
|
||||
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
|
||||
|
||||
self.ucg_training = ucg_training or dict()
|
||||
if self.ucg_training:
|
||||
self.ucg_prng = np.random.RandomState()
|
||||
|
||||
|
||||
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
|
||||
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
|
||||
|
@ -389,6 +394,15 @@ class DDPM(pl.LightningModule):
|
|||
return loss, loss_dict
|
||||
|
||||
def training_step(self, batch, batch_idx):
|
||||
for k in self.ucg_training:
|
||||
p = self.ucg_training[k]["p"]
|
||||
val = self.ucg_training[k]["val"]
|
||||
if val is None:
|
||||
val = ""
|
||||
for i in range(len(batch[k])):
|
||||
if self.ucg_prng.choice(2, p=[1-p, p]):
|
||||
batch[k][i] = val
|
||||
|
||||
loss, loss_dict = self.shared_step(batch)
|
||||
|
||||
self.log_dict(loss_dict, prog_bar=True,
|
||||
|
|
52
scripts/slurm/v1_iahr_torch111_ucg/launcher.sh
Executable file
52
scripts/slurm/v1_iahr_torch111_ucg/launcher.sh
Executable file
|
@ -0,0 +1,52 @@
|
|||
#!/bin/bash
|
||||
|
||||
# mpi version for node rank
|
||||
H=`hostname`
|
||||
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
|
||||
export NODE_RANK=${THEID}
|
||||
echo THEID=$THEID
|
||||
|
||||
echo "##########################################"
|
||||
echo MASTER_ADDR=${MASTER_ADDR}
|
||||
echo MASTER_PORT=${MASTER_PORT}
|
||||
echo NODE_RANK=${NODE_RANK}
|
||||
echo WORLD_SIZE=${WORLD_SIZE}
|
||||
echo "##########################################"
|
||||
# debug environment worked great so we stick with it
|
||||
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
|
||||
# env with pip dependencies from stable diffusion's requirements.txt
|
||||
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
|
||||
#conda activate stable
|
||||
conda activate torch111
|
||||
cd /fsx/stable-diffusion/stable-diffusion
|
||||
|
||||
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml"
|
||||
|
||||
# resume and set new seed to reshuffle data
|
||||
#EXTRA="--seed 718 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints2/v1pp/v1pp-flatline.ckpt"
|
||||
#EXTRA="--seed 718 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T07-45-07_v1_improvedaesthetics/checkpoints/last.ckpt"
|
||||
#EXTRA="--seed 719 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T12-32-32_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
|
||||
#EXTRA="--seed 720 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-23T07-52-21_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
|
||||
EXTRA="--seed 721 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-24T19-07-33_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
|
||||
|
||||
# only images >= 512 and pwatermark <= 0.4999
|
||||
EXTRA="${EXTRA} data.params.min_size=512 data.params.max_pwatermark=0.4999"
|
||||
|
||||
# unconditional guidance training
|
||||
EXTRA="${EXTRA} model.params.ucg_training.txt.p=0.1 model.params.ucg_training.txt.val=''"
|
||||
|
||||
# postfix
|
||||
EXTRA="${EXTRA} -f v1_iahr_torch111_ucg"
|
||||
|
||||
# time to decay
|
||||
#EXTRA="${EXTRA} model.params.scheduler_config.params.cycle_lengths=[300000] model.params.scheduler_config.params.warm_up_steps=[250000] model.params.scheduler_config.params.f_min=[1e-6]"
|
||||
|
||||
# custom logdir
|
||||
#EXTRA="${EXTRA} --logdir rlogs"
|
||||
|
||||
# debugging
|
||||
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
|
||||
|
||||
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
|
||||
|
||||
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA
|
44
scripts/slurm/v1_iahr_torch111_ucg/sbatch.sh
Executable file
44
scripts/slurm/v1_iahr_torch111_ucg/sbatch.sh
Executable file
|
@ -0,0 +1,44 @@
|
|||
#!/bin/bash
|
||||
#SBATCH --partition=compute-od-gpu
|
||||
#SBATCH --job-name=stable-diffusion-v1-iahr-torch111-ucg
|
||||
#SBATCH --nodes 32
|
||||
#SBATCH --ntasks-per-node 1
|
||||
#SBATCH --cpus-per-gpu=4
|
||||
#SBATCH --gres=gpu:8
|
||||
#SBATCH --exclusive
|
||||
#SBATCH --output=%x_%j.out
|
||||
#SBATCH --comment "Key=Monitoring,Value=ON"
|
||||
#SBATCH --no-requeue
|
||||
|
||||
module load intelmpi
|
||||
source /opt/intel/mpi/latest/env/vars.sh
|
||||
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
|
||||
#export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
|
||||
#all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
|
||||
export NCCL_PROTO=simple
|
||||
export PATH=/opt/amazon/efa/bin:$PATH
|
||||
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
|
||||
export FI_EFA_FORK_SAFE=1
|
||||
export FI_LOG_LEVEL=1
|
||||
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
|
||||
export NCCL_DEBUG=info
|
||||
export PYTHONFAULTHANDLER=1
|
||||
export CUDA_LAUNCH_BLOCKING=0
|
||||
export OMPI_MCA_mtl_base_verbose=1
|
||||
export FI_EFA_ENABLE_SHM_TRANSFER=0
|
||||
export FI_PROVIDER=efa
|
||||
export FI_EFA_TX_MIN_CREDITS=64
|
||||
export NCCL_TREE_THRESHOLD=0
|
||||
|
||||
# sent to sub script
|
||||
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
|
||||
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
|
||||
export MASTER_PORT=12802
|
||||
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
|
||||
export WORLD_SIZE=$COUNT_NODE
|
||||
|
||||
echo go $COUNT_NODE
|
||||
echo $HOSTNAMES
|
||||
echo $WORLD_SIZE
|
||||
|
||||
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v1_iahr_torch111_ucg/launcher.sh
|
Loading…
Reference in a new issue