support unconditional guidance training

This commit is contained in:
Patrick Esser 2022-07-28 22:46:14 +00:00
parent d762d5992a
commit 8ed76d2350
3 changed files with 110 additions and 0 deletions

View file

@ -74,6 +74,7 @@ class DDPM(pl.LightningModule):
learn_logvar=False,
logvar_init=0.,
make_it_fit=False,
ucg_training=None,
):
super().__init__()
assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"'
@ -117,6 +118,10 @@ class DDPM(pl.LightningModule):
if self.learn_logvar:
self.logvar = nn.Parameter(self.logvar, requires_grad=True)
self.ucg_training = ucg_training or dict()
if self.ucg_training:
self.ucg_prng = np.random.RandomState()
def register_schedule(self, given_betas=None, beta_schedule="linear", timesteps=1000,
linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3):
@ -389,6 +394,15 @@ class DDPM(pl.LightningModule):
return loss, loss_dict
def training_step(self, batch, batch_idx):
for k in self.ucg_training:
p = self.ucg_training[k]["p"]
val = self.ucg_training[k]["val"]
if val is None:
val = ""
for i in range(len(batch[k])):
if self.ucg_prng.choice(2, p=[1-p, p]):
batch[k][i] = val
loss, loss_dict = self.shared_step(batch)
self.log_dict(loss_dict, prog_bar=True,

View file

@ -0,0 +1,52 @@
#!/bin/bash
# mpi version for node rank
H=`hostname`
THEID=`echo -e $HOSTNAMES | python3 -c "import sys;[sys.stdout.write(str(i)) for i,line in enumerate(next(sys.stdin).split(' ')) if line.strip() == '$H'.strip()]"`
export NODE_RANK=${THEID}
echo THEID=$THEID
echo "##########################################"
echo MASTER_ADDR=${MASTER_ADDR}
echo MASTER_PORT=${MASTER_PORT}
echo NODE_RANK=${NODE_RANK}
echo WORLD_SIZE=${WORLD_SIZE}
echo "##########################################"
# debug environment worked great so we stick with it
# no magic there, just a miniconda python=3.9, pytorch=1.12, cudatoolkit=11.3
# env with pip dependencies from stable diffusion's requirements.txt
eval "$(/fsx/stable-diffusion/debug/miniconda3/bin/conda shell.bash hook)"
#conda activate stable
conda activate torch111
cd /fsx/stable-diffusion/stable-diffusion
CONFIG="/fsx/stable-diffusion/stable-diffusion/configs/stable-diffusion/v1_improvedaesthetics.yaml"
# resume and set new seed to reshuffle data
#EXTRA="--seed 718 model.params.ckpt_path=/fsx/stable-diffusion/stable-diffusion/checkpoints2/v1pp/v1pp-flatline.ckpt"
#EXTRA="--seed 718 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T07-45-07_v1_improvedaesthetics/checkpoints/last.ckpt"
#EXTRA="--seed 719 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-22T12-32-32_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
#EXTRA="--seed 720 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-23T07-52-21_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
EXTRA="--seed 721 --resume_from_checkpoint /fsx/stable-diffusion/stable-diffusion/logs/2022-07-24T19-07-33_v1_improvedaestheticsv1_iahr_torch111/checkpoints/last.ckpt"
# only images >= 512 and pwatermark <= 0.4999
EXTRA="${EXTRA} data.params.min_size=512 data.params.max_pwatermark=0.4999"
# unconditional guidance training
EXTRA="${EXTRA} model.params.ucg_training.txt.p=0.1 model.params.ucg_training.txt.val=''"
# postfix
EXTRA="${EXTRA} -f v1_iahr_torch111_ucg"
# time to decay
#EXTRA="${EXTRA} model.params.scheduler_config.params.cycle_lengths=[300000] model.params.scheduler_config.params.warm_up_steps=[250000] model.params.scheduler_config.params.f_min=[1e-6]"
# custom logdir
#EXTRA="${EXTRA} --logdir rlogs"
# debugging
#EXTRA="${EXTRA} -d True lightning.callbacks.image_logger.params.batch_frequency=50"
/bin/bash /fsx/stable-diffusion/stable-diffusion/scripts/test_gpu.sh
python main.py --base $CONFIG --gpus 0,1,2,3,4,5,6,7 -t --num_nodes ${WORLD_SIZE} --scale_lr False $EXTRA

View file

@ -0,0 +1,44 @@
#!/bin/bash
#SBATCH --partition=compute-od-gpu
#SBATCH --job-name=stable-diffusion-v1-iahr-torch111-ucg
#SBATCH --nodes 32
#SBATCH --ntasks-per-node 1
#SBATCH --cpus-per-gpu=4
#SBATCH --gres=gpu:8
#SBATCH --exclusive
#SBATCH --output=%x_%j.out
#SBATCH --comment "Key=Monitoring,Value=ON"
#SBATCH --no-requeue
module load intelmpi
source /opt/intel/mpi/latest/env/vars.sh
export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-install/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH=/opt/aws-ofi-nccl/lib:/opt/amazon/efa/lib64:/usr/local/cuda-11.0/efa/lib:/usr/local/cuda-11.0/lib:/usr/local/cuda-11.0/lib64:/usr/local/cuda-11.0:/opt/nccl/build/lib:/opt/aws-ofi-nccl-inst
#all/lib:/opt/aws-ofi-nccl/lib:$LD_LIBRARY_PATH
export NCCL_PROTO=simple
export PATH=/opt/amazon/efa/bin:$PATH
export LD_PRELOAD="/opt/nccl/build/lib/libnccl.so"
export FI_EFA_FORK_SAFE=1
export FI_LOG_LEVEL=1
export FI_EFA_USE_DEVICE_RDMA=1 # use for p4dn
export NCCL_DEBUG=info
export PYTHONFAULTHANDLER=1
export CUDA_LAUNCH_BLOCKING=0
export OMPI_MCA_mtl_base_verbose=1
export FI_EFA_ENABLE_SHM_TRANSFER=0
export FI_PROVIDER=efa
export FI_EFA_TX_MIN_CREDITS=64
export NCCL_TREE_THRESHOLD=0
# sent to sub script
export HOSTNAMES=`scontrol show hostnames "$SLURM_JOB_NODELIST"`
export MASTER_ADDR=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_PORT=12802
export COUNT_NODE=`scontrol show hostnames "$SLURM_JOB_NODELIST" | wc -l`
export WORLD_SIZE=$COUNT_NODE
echo go $COUNT_NODE
echo $HOSTNAMES
echo $WORLD_SIZE
mpirun -n $COUNT_NODE -perhost 1 /fsx/stable-diffusion/stable-diffusion/scripts/slurm/v1_iahr_torch111_ucg/launcher.sh