Merge remote-tracking branch 'origin/main'

This commit is contained in:
Patrick Esser 2022-07-31 23:27:09 +00:00
commit 85868a5d34
4 changed files with 131 additions and 99 deletions

View file

@ -1,6 +1,7 @@
"""make variations of input image"""
import argparse, os, sys, glob
import PIL
import torch
import numpy as np
from omegaconf import OmegaConf
@ -9,6 +10,8 @@ from tqdm import tqdm, trange
from itertools import islice
from einops import rearrange, repeat
from torchvision.utils import make_grid
from torch import autocast
from contextlib import nullcontext
import time
from pytorch_lightning import seed_everything
@ -43,8 +46,12 @@ def load_model_from_config(config, ckpt, verbose=False):
def load_img(path):
image = np.array(Image.open(path).convert("RGB"))
image = image.astype(np.float32) / 255.0
image = Image.open(path).convert("RGB")
w, h = image.size
print(f"loaded input image of size ({w}, {h}) from {path}")
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
image = image.resize((w, h), resample=PIL.Image.LANCZOS)
image = np.array(image).astype(np.float32) / 255.0
image = image[None].transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return 2.*image - 1.
@ -119,20 +126,6 @@ def main():
help="sample this often",
)
parser.add_argument(
"--H",
type=int,
default=256,
help="image height, in pixel space",
)
parser.add_argument(
"--W",
type=int,
default=256,
help="image width, in pixel space",
)
parser.add_argument(
"--C",
type=int,
@ -149,7 +142,7 @@ def main():
parser.add_argument(
"--n_samples",
type=int,
default=8,
default=2,
help="how many samples to produce for each given prompt. A.k.a batch size",
)
@ -170,7 +163,7 @@ def main():
parser.add_argument(
"--strength",
type=float,
default=0.3,
default=0.75,
help="strength for noising/unnoising. 1.0 corresponds to full destruction of information in init image",
)
@ -197,6 +190,14 @@ def main():
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
opt = parser.parse_args()
seed_everything(opt.seed)
@ -244,7 +245,9 @@ def main():
t_enc = int(opt.strength * opt.ddim_steps)
print(f"target t_enc is {t_enc} steps")
precision_scope = autocast if opt.precision == "autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
tic = time.time()
all_samples = list()
@ -288,7 +291,7 @@ def main():
toc = time.time()
print(f"Your samples are ready and waiting for you here: \n{outpath} \n"
f"Sampling took {toc - tic}s, i.e. produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
f"Sampling took {toc - tic}s, i.e., produced {opt.n_iter * opt.n_samples / (toc - tic):.2f} samples/sec."
f" \nEnjoy.")

View file

@ -3,7 +3,7 @@ import torch
import fire
def prune_it(p):
def prune_it(p, keep_only_ema=False):
print(f"prunin' in path: {p}")
size_initial = os.path.getsize(p)
nsd = dict()
@ -16,12 +16,30 @@ def prune_it(p):
print(f"removing optimizer states for path {p}")
if "global_step" in sd:
print(f"This is global step {sd['global_step']}.")
fn = f"{os.path.splitext(p)[0]}-pruned.ckpt"
if keep_only_ema:
sd = nsd["state_dict"].copy()
# infer ema keys
ema_keys = {k: "model_ema." + k[6:].replace(".", "") for k in sd.keys() if k.startswith("model.")}
new_sd = dict()
for k in sd:
if k in ema_keys:
new_sd[k] = sd[ema_keys[k]]
elif not k.startswith("model_ema.") or k in ["model_ema.num_updates", "model_ema.decay"]:
new_sd[k] = sd[k]
assert len(new_sd) == len(sd) - len(ema_keys)
nsd["state_dict"] = new_sd
fn = f"{os.path.splitext(p)[0]}-pruned.ckpt" if not keep_only_ema else f"{os.path.splitext(p)[0]}-ema-pruned.ckpt"
print(f"saving pruned checkpoint at: {fn}")
torch.save(nsd, fn)
newsize = os.path.getsize(fn)
print(f"New ckpt size: {newsize*1e-9:.2f} GB. "
f"Saved {(size_initial - newsize)*1e-9:.2f} GB by removing optimizer states")
MSG = f"New ckpt size: {newsize*1e-9:.2f} GB. " + \
f"Saved {(size_initial - newsize)*1e-9:.2f} GB by removing optimizer states"
if keep_only_ema:
MSG += " and non-EMA weights"
print(MSG)
if __name__ == "__main__":

View file

@ -9,6 +9,8 @@ from einops import rearrange
from torchvision.utils import make_grid
import time
from pytorch_lightning import seed_everything
from torch import autocast
from contextlib import contextmanager, nullcontext
from ldm.util import instantiate_from_config
from ldm.models.diffusion.ddim import DDIMSampler
@ -178,6 +180,13 @@ def main():
default=42,
help="the seed (for reproducible sampling)",
)
parser.add_argument(
"--precision",
type=str,
help="evaluate at this precision",
choices=["full", "autocast"],
default="autocast"
)
opt = parser.parse_args()
seed_everything(opt.seed)
@ -217,7 +226,9 @@ def main():
if opt.fixed_code:
start_code = torch.randn([opt.n_samples, opt.C, opt.H // opt.f, opt.W // opt.f], device=device)
precision_scope = autocast if opt.precision=="autocast" else nullcontext
with torch.no_grad():
with precision_scope("cuda"):
with model.ema_scope():
tic = time.time()
all_samples = list()